[ CQOI 2009 ] 中位数图

\(\\\)

\(Description\)


给出\(N\)的一个全排列,统计该排列有多少个长度为奇数的连续子序列,中位数是\(B\)

  • \(N\in [0,10^5]\)\(B\in [0,N]\)

\(\\\)

\(Solution\)


  • 套路做法。将序列中大于\(B\)的数记为\(1\),小于记为\(-1\),那么区间和为\(0\)当且仅当这一区间内大于\(B\)和小于\(B\)的个数一样多,也就是说这个区间的中位数为\(B\)。另外这一方案的好处是,因为给的是个排列,只要你选定的区间包括\(B\)且它区间和为\(0\),这个区间长度一定为奇数。

  • 转化成前缀和相减的形式。每一个位置能产生的贡献是前缀跟他相同且在他前面的位置个数。注意到是排列,所以\(B\)只有一次,且合法区间必须跨过\(B\),不妨设\(f[0/1][i]\)代表\(B\)出现位置的左\(/\)右,前缀和为\(i\)的位置个数,这个东西显然扫一遍就可以统计。

  • 显然在\(B\)同一侧的位置所构成的区间不会产生贡献,所以每一个答案必定由\(c[0][i]\)\(c[1][i]\)中各选一个组合得到,所以最后的答案为\(\sum_{i=-n}^nc[0][i]\times c[1][i]\)

  • 注意数列开始时是有一个\(0\)的,所以要\(c[0][0]=1\)。处理注意合法闭区间右端点可以是\(B\)

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
using namespace std;
 
inline int rd(){
  int x=0; bool f=0; char c=gc();
  while(!isdigit(c)){if(c=='-')f=1;c=gc();}
  while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
  return f?-x:x;
}
 
int n,m,ans,cnt[2][N<<1];
 
int main(){
  n=rd(); m=rd(); cnt[0][n]=1;
  for(R int i=1,now=0,x,sum=n;i<=n;++i){
    x=rd();
    ++cnt[now|=(x==m)][sum+=(x>m)-(x<m)];
  }
  for(R int i=0;i<=(n<<1);++i) ans+=cnt[0][i]*cnt[1][i];
  printf("%d\n",ans);
  return 0;
}

转载于:https://www.cnblogs.com/SGCollin/p/9673574.html

题目描述 有 $n$ 个人,每个人有一个编号 $i$,每个人都跳舞,但是每个人都只会一种舞蹈。现在要求他们排成一个圆圈跳舞,使得相邻两个人跳的舞蹈不同。求方案数。 输入格式 一个整数 $n$。 输出格式 一个整数,表示方案数,由于答案可能很大,输出对 $10^9+7$ 取模的结果。 数据范围 $1\leq n\leq 10^5$ 输入样例1: 5 输出样例1: 20 输入样例2: 10 输出样例2: 14684570 算法 数学,组合数学,动态规划 思路 题目要求的是排成一个圆圈跳舞,而且相邻两个人跳舞的舞蹈不同,这就意味着最后一个人的舞蹈类型必须和第一个人不同。因为它们是相邻的。 如果我们考虑将最后一个人的舞蹈类型和第一个人不同的方案数,那么实际上就是将 $n$ 个人分成两组: - 第一组是前 $n-1$ 个人,需要满足相邻两个人跳舞的舞蹈不同。 - 第二组是第 $n$ 个人,需要满足和第一个人跳舞的舞蹈不同。 对于第一组,我们可以定义 $f[i]$ 表示前 $i$ 个人,最后一个人和第一个人跳舞的舞蹈类型不同的方案数。因为需要满足相邻两个人跳舞的舞蹈不同,所以有两种情况: - 如果第 $i$ 个人和第 $i-1$ 个人跳舞的舞蹈类型不同,那么最后一个人的舞蹈类型可以是除了第 $i-1$ 个人和第一个人外的所有舞蹈类型,即共有 $n-2$ 种选择。 - 如果第 $i$ 个人和第 $i-1$ 个人跳舞的舞蹈类型相同,那么最后一个人的舞蹈类型只能是第 $i-1$ 个人和第一个人的舞蹈类型中的一种,即共有 $2$ 种选择。 综上所述,递推式为: $$f[i]=\begin{cases} (n-2)\times f[i-1] + 2\times f[i-2], & a[i]\neq a[i-1] \\ (n-1)\times f[i-1], & a[i]=a[i-1] \end{cases}$$ 对于第二组,最后一个人的舞蹈类型只能是除了第一个人的所有舞蹈类型,即共有 $n-1$ 种选择。 因此我们可以得到最终的方案数: $$ans=(n-1)\times f[n-1]$$ 代码 时间复杂度 $O(n)$ 空间复杂度 $O(n)$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值