动态规划---->每对定点之间的最短路径 Floyd(弗洛伊德)算法

最短路径

1、问题描述

设G = ( V, E)是一个有n 个结点的有向图。又设C 是G 的成本邻接矩阵, 其中C(i,i)= 0 , 1≤i≤n; 当〈i,j〉∈E (G)时, C( i,j) 表示边〈i,j〉的长度(或成本) ; 当i≠j 且〈i,j〉| E(G)时, C( i ,j) = ∞。每对结点之间的最短路径问题( all pair s shor test path problem) 是求满足下述条件的矩阵A: A 中的任何元素A(i,j) 是代表结点i到结点j的最短路径的长度

2、所有顶点间的最短路径—--用Floyd(弗洛伊德)算法

问题的提出:已知一个各边权值均大于0的带权有向图,对每一对顶点 vi¹vj,希望求出vi与vj之间的最短路径和最短路径长度。

解决思路:可以通过调用n次Dijkstra算法来完成,但时间复杂度为O(n3)。

改进: 弗洛伊德(Floyd)算法

算法思想:逐个顶点试探法

求最短路径步骤

1、初始时设置一个n阶方阵,令其对角线元素为0,若存在弧<Vi,Vj>,则对应元素为权值;否则为µ

2、逐步试着在原直接路径中增加中间顶点,若加入中间点后路径变短,则修改之;否则,维持原值

3、所有顶点试探完毕,算法结束

例子

 

Floyd 算法的程序的简单描述:

      int  i, j,k;  // 标识结点

      for (i=0; i<n; i++)

           for (j=0; j<n; j++) A[i,j] = C[i,j];

      for (i=0; i<n; i++ ) A[i,i] = 0;

      for (k=0; k<n; k++)

            for (i=0; i<n; i++)

                for (j=0; j<n; j++)

          if (A[i,k]+A[k,j]<A[i,j])

              A[i,j]=A[i,k]+A[k,j];

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值