2018年宝鸡市三检理科数学题目解答

宝鸡市提供的答案

一、选择题:

第2题(判断函数的奇偶性或对称性)
函数$f(x)=\cfrac{4^x+1}{2^x}$的图像【】
A、关于原点对称$\;\;\;\;\;$ B、关于$x$轴对称$\;\;\;\;\;$ C、关于$y$轴对称$\;\;\;\;\;$ D、关于直线$y=x$轴对称$\;\;\;\;\;$
分析:注意到$f(x)=\cfrac{4^x+1}{2^x}=\cfrac{(2^x)^2+1}{2^x}=2^x+\cfrac{1}{2^x}=2^x+2^{-x}$,
则$f(-x)=2^{-x}+2^{-(-x)}=2^x+2^{-x}=f(x)$,故函数$f(x)$为偶函数,故选B。
解后反思:
1、积累常见函数的奇偶性很重要,比如$f(x)=e^x+e^{-x}$为偶函数,$f(x)=e^{|x|}$为偶函数,$f(x)=e^x-e^{-x}$为奇函数,等等。
2、 函数的奇偶性
第5题(限定条件下的均值不等式使用)
若正数$x,y$满足$x+3y=5xy$,则$3x+4y$的最小值是【】
A、$\cfrac{24}{5}\;\;\;\;\;$ B、$\cfrac{28}{5}\;\;\;\;\;$ C、$5\;\;\;\;\;$ D、$6\;\;\;\;\;$
分析:给已知式子$x+3y=5xy$,两边同除以 $xy$得到,$\cfrac{3}{x}+\cfrac{1}{y}=5$,
则问题转化为已知$\cfrac{3}{x}+\cfrac{1}{y}=5$,求$3x+4y$的最小值 则$3x+4y=\cfrac{1}{5}(3x+4y)(\cfrac{3}{x}+\cfrac{1}{y})$,
$=\cfrac{1}{5}(9+4+\cfrac{12y}{x}+\cfrac{3x}{y})\ge \cfrac{1}{5}(13+2\sqrt{36})=5$,
当且仅当$\cfrac{12y}{x}=\cfrac{3x}{y}$且$x+3y=5xy$时,即$x=1, y=\cfrac{1}{2}$时取得等号。
故选C。
解后反思:
1、务必注意限定条件的给出方式,比如题目若给定$\cfrac{3}{x}+\cfrac{1}{y}=5$就比给定$\cfrac{x}{y}+3=5x$要简单的多。
2、 学习方法的改造和提升
第11题(已知零点的个数,求参数的取值范围)
若函数$f(x)=m-x^2+2lnx$在区间$[\cfrac{1}{e^2},e]$上有两个不同的零点,则实数$m$的取值范围是【】
A、$(1,e^2-2]\;\;\;\;\;$ B、$[4+\cfrac{1}{e^4},e^2-2]\;\;\;\;\;$ C、$(1,4+\cfrac{1}{e^4}]\;\;\;\;\;$ D、$[1,+\infty)\;\;\;\;\;$
法1:先数后形,分离参数,得到$m=x^2-2lnx$,
令$h(x)=x^2-2lnx(x\in [\cfrac{1}{e^2},e])$,用导数研究函数的单调性,以画出大致图像。
$h'(x)=2x-\cfrac{2}{x}=\cfrac{2x^2-2}{x}=\cfrac{2(x-1)(x+1)}{x}$,
故在$(\cfrac{1}{e^2},1)$上,$h'(x)<0$,$h(x)$单调递减,
在$(1,e)$上,$h'(x)>0$,$h(x)$单调递增,
故$h(x)_{min}=h(1)=1$,
端点值$h(\cfrac{1}{e^2})=4+\cfrac{1}{e^4}$,$h(e)=e^2-2$,且$h(e)>h(\cfrac{1}{e^4})$,
在同一个坐标系中作出函数$y=m$和函数$y=h(x)$的图像,
要使两个函数的图像有两个交点,
由图像可知,$1< m <4+\cfrac{1}{e^2}$。
法2:利用参数的几何意义,直接从形上考虑?待编辑
参考图像

二、填空题:

三、解答题:

第17题(求数列的通项公式和等差数列的判断)
设$\{a_n\}$是首项为$a_1$,公比为$q$的等比数列,$S_n$为数列$\{a_n\}$的前$n$项和。 (1)已知$a_2=2$,且$a_3$是$S_1,S_3$的等差中项,求数列$\{a_n\}$的通项公式; (2)当$a_1=1$,$q=2$时,令$b_n=log_4(S_n+1)$,求证:数列$\{b_n\}$是等差数列。 Cnblogs_LT02.bmp$\fbox{第?题}$(已知函数无零点,求参数的取值范围或最值)
数列 第19题(概率,贝努里概型)
某商场举行有奖促销活动,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出一个球,在摸出的2个球中,若都是红球,则获得一等奖;若只有一个红球,则获得二等奖;若没有红球,则没有获奖, (1)求顾客抽奖一次能获奖的概率。 【法1】(相互独立事件+互斥事件):记“抽奖一次能获一等奖”为事件$A$,“抽奖一次能获二等奖”为事件$B$, “顾客抽奖一次能获奖”为事件$C$,则事件$A、B$是互斥事件,且$C=A+B$,两次抽奖是相互独立事件, 则$P(A)=\cfrac{C_4^1}{C_{10}^1}\cdot \cfrac{C_5^1}{C_{10}^1}=\cfrac{20}{100}$, $P(B)=\cfrac{C_4^1}{C_{10}^1}\cdot \cfrac{C_5^1}{C_{10}^1}+\cfrac{C_6^1}{C_{10}^1}\cdot \cfrac{C_5^1}{C_{10}^1}=\cfrac{50}{100}$ 故$P(C)=P(A+B)=\cfrac{70}{100}=\cfrac{7}{10}$。 【法2】(对立事件+相互独立事件):设“没有获奖”为事件$D$, 则$P(C)=1-P(D)=1-\cfrac{C_6^1}{C_{10}^1}\cdot \cfrac{C_5^1}{C_{10}^1}=\cfrac{7}{10}$。 (2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获得一等奖的次数为$X$,求$X$的分布列、数学期望和方差。 由于顾客在每次抽奖过程中,中一等奖的概率都为$\cfrac{C_4^1}{C_{10}^1}\cdot \cfrac{C_5^1}{C_{10}^1}=\cfrac{1}{5}$, 那么此人抽奖3次,相当于做了3次独立重复实验,故$X\sim B(3,\cfrac{1}{5})$,$X=0,1,2,3$; 即$P(X=k)=C_3^k\cdot (\cfrac{1}{5})^k(1-\cfrac{1}{5})^{3-k}$,$k=0,1,2,3$; 则$P(X=0)=C_3^0\cdot (\cfrac{1}{5})^0(1-\cfrac{1}{5})^{3-0}=\cfrac{64}{125}$, $P(X=1)=C_3^1\cdot (\cfrac{1}{5})^1(1-\cfrac{1}{5})^{3-1}=\cfrac{48}{125}$, $P(X=2)=C_3^2\cdot (\cfrac{1}{5})^2(1-\cfrac{1}{5})^{3-2}=\cfrac{12}{125}$, $P(X=3)=C_3^3\cdot (\cfrac{1}{5})^3(1-\cfrac{1}{5})^{3-3}=\cfrac{1}{125}$, 分布列略,数学期望为$EX=3\times \cfrac{1}{5}=\cfrac{3}{5}$ 方差为$DX=3\times \cfrac{1}{5}\times (1-\cfrac{1}{5})=\cfrac{12}{25}$ 解后反思: 1、求复杂事件的概率,需要将复杂事件分化为几个简单的事件,且必须弄清楚个事件之间的关系,这会决定后续的计算是用加法还是乘法。 2、$n$次独立重复实验中,离散型随机变量$X\sim B(n,p)$,则$EX=np$,$DX=np(1-p)$。 第21题(已知函数无零点,求参数的取值范围或最值)
已知函数$f(x)=(2-a)x-2(1+lnx)+a$,$g(x)=\cfrac{ex}{e^x}$,
(1)若函数$f(x)$在区间$(0,\cfrac{1}{2})$上无零点,求实数$a$的最小值。
【法1】(分离参数,参数形式简单,函数复杂) 碰到这类问题,我们的第一反应往往是分离参数,然后数形结合求解,但是这个方法不见得是很恰当和很灵活的。
先变形为$a(1-x)=2+2lnx-2x$,
再分离参数为$a=\cfrac{2+2lnx-2x}{1-x}$,其中$x\in (0,\cfrac{1}{2})$,
令函数$h(x)=\cfrac{2+2lnx-2x}{1-x}$,接下来用导数研究单调性,准备做函数的大值图像,
$h'(x)=\cfrac{(\cfrac{2}{x}-2)(1-x)-(2+2lnx-2x)(-1)}{(1-x)^2}=\cfrac{2lnx+\cfrac{2}{x}-2}{(1-x)^2}$
暂时没法看透$h'(x)$的正负值,也无法判断原函数$h(x)$的增减性,
故再设$h'(x)$的分子函数为$m(x)=2lnx+\cfrac{2}{x}-2$,
$m'(x)=\cfrac{2}{x}-\cfrac{2}{x^2}=\cfrac{2x-2}{x^2}$,
由于$0< x 故函数$m(x)$的最小值的极限为$m(\cfrac{1}{2})=2ln\cfrac{1}{2}+4-2=2(1-ln2)>0$
编外话:由分子函数$m(x)$的最小值的极限为正,说明函数$h'(x)$的分子都为正,
故$h'(x)=\cfrac{m(x)}{(1-x)^2}>0$,故函数$h(x)$在$x\in (0,\cfrac{1}{2})$上单调递增,
故$h(x)$的最大值的极限为$h(\cfrac{1}{2})=\cfrac{2+2ln\cfrac{1}{2}-2\times\cfrac{1}{2}}{1-\cfrac{1}{2}}=2(1-2ln2)$
要使直线$y=a$与函数$y=h(x)(0< x 则$a$的取值范围是$a\ge 2(1-2ln2)$,故$a_{min}=2-4ln2$。
【法2】(分离参数,参数形式复杂,函数简单) 将原方程$(2-a)x-2(1+lnx)+a=0$,
变形为$\cfrac{2-a}{2}=\cfrac{lnx}{x-1}$,
令$h(x)=\cfrac{lnx}{x-1}$,
则$h'(x)=\cfrac{\cfrac{1}{x}(x-1)-lnx}{(x-1)^2}=\cfrac{1-\cfrac{1}{x}-lnx}{(x-1)^2}$
令$m(x)=1-\cfrac{1}{x}-lnx$,
则$m'(x)=\cfrac{1}{x^2}-\cfrac{1}{x}=\cfrac{1-x}{x^2}>0$在$(0,\cfrac{1}{2})$上恒成立,
故函数$m(x)$在$(0,\cfrac{1}{2})$单调递增,
故$m(x)_{max}$的极限为$m(\cfrac{1}{2})=1-2-ln\cfrac{1}{2}=ln2-1<0$
则函数$h'(x)=\cfrac{m(x)}{(x-1)^2}<0$在$(0,\cfrac{1}{2})$上恒成立,
函数$h(x)$在$(0,\cfrac{1}{2})$上单调递减,
则$h(x)_{min}$的极限为$h(\cfrac{1}{2})=\cfrac{ln\cfrac{1}{2}}{\cfrac{1}{2}-1}=2ln2$
要使得原方程无解,必须满足函数$y=\cfrac{2-a}{2}$与函数$y=h(x)$没有交点,
即$\cfrac{2-a}{2}\leq 2ln2$,即$a\ge 2-4ln2$
故$a_{min}=2-4ln2$。
【法3】要是不用分离参数的方法,我们还可以这么分析呢?
我们这样想,分离参数法是从数的角度来求解的,那么我们可以换个思路,想想能不能从形上入手分析?
这时候,最好将原方程$f(x)=0$变形得到两个函数$h(x)=m(x)$,
其中这两个函数最好是基本初等函数,这样它们的图像我们不用费事就能做出来,
同时让参数配备个几何意义那是最好的选择,比如斜率等等,故求解如下:
由于函数$f(x)=0$在$x\in (0,\cfrac{1}{2})$上没有零点,
则$(2-a)x-2(1+lnx)+a=0$在$x\in (0,\cfrac{1}{2})$上没有零点,
变形为$(2-a)(x-1)=2lnx(0< x 这样左端为函数$h(x)=(2-a)(x-1)$,是过定点$(1,0)$斜率是$2-a$的直线段,
右端为函数$m(x)=2lnx$,是过定点$(1,0)$的对数型函数的一部分,
图像
当直线段过点$(1,0)$和$(\cfrac{1}{2},2ln\cfrac{1}{2})$时,斜率为$k=\cfrac{2-2ln\cfrac{1}{2}}{1-\cfrac{1}{2}}=4ln2$,
由图像可知,要让这两个定义在$x\in (0,\cfrac{1}{2})$上的函数没有交点,
只需要函数$h(x)$的斜率$2-a$小于等于斜率$k=4ln2$即可,
故$2-a\leq 4ln2$,即则$a$的取值范围是$a\ge 2(1-2ln2)$,
故$a_{min}=2-4ln2$。
解后反思:
1、法1是这类问题的通用解法,但是分离参数后得到的右端的函数,其单调性用导数判断可能很辛苦,
这个题目就说明了这一点,而且用到了二阶导数,一般学生根本分不清一阶导数和二阶导数的关系,所以慎重使用。
2、法2比法1虽然都是分离参数法,但是我们感觉法2比法1要简单,其主要原因是法2采用的策略是,
让函数简单些,让参数复杂些,这样运算量就小很多了。
3、法3将方程分离成立两个基本初等函数的形式,这样就可以很快很容易的使用形来解决问题了,到此我们也能体会命题人的意图,
能将问题简化为我们学习过的,简单模型的学生,是不是其思维具有更好的可塑性。
第22题(坐标系与参数方程)
已知圆锥曲线$C:\begin{cases}x=2cos\alpha\\y=\sqrt{3}cos\alpha\end{cases}(\alpha为参数)$和定点$A(0,\sqrt{3})$,$F_1,F_2$是此圆锥曲线的左右焦点,以原点为极点,以$x$轴正半轴为极轴建立极坐标系。 (1)求直线$AF_2$的直角坐标方程; (2)经过点$F_1$且与直线$AF_2$垂直的直线$l$交此圆锥曲线于$M,N$两点,求$||MF_1|-|NF_1||$的值。 分析:(1)消参数得到曲线$C$的直角坐标方程为$\cfrac{x^2}{4}+\cfrac{y^2}{3}=1$; 由于$A(0,\sqrt{3})$,$F_2( 1,0)$,故直线方程为$\sqrt{3}x+y-\sqrt{3}=0$。 此时直线的斜率为$k_0=-\sqrt{3}$; (2)由上可知,直线$l$的斜率为$k_1=\cfrac{\sqrt{3}}{3}$,即倾斜角为$\alpha=\cfrac{\pi}{6}$, 又点$F_1(-1,0)$,故直线$l$的参数方程为$\begin{cases}x=x_0+cos\alpha\cdot t\\y=y_0+sin\alpha \cdot t \end{cases}(t为参数)$ 即$\begin{cases}x=-1+\cfrac{\sqrt{3}}{2} t\\y=0+\cfrac{1}{2} t \end{cases}(t为参数)$ 将其代入曲线$C$的直角坐标方程$\cfrac{x^2}{4}+\cfrac{y^2}{3}=1$; 整理为$13t^2-12\sqrt{3}t-36=0$, 容易证明$\Delta >0$,令$M,N$分别对应的参数为$t_1,t_2$, 则有$t_1+t_2=\cfrac{12\sqrt{3}}{13}>0$,$t_1t_2=-\cfrac{36}{13}<0$; 则$t_1,t_2$异号,$t_1>0,t_2<0$或$t_1<0,t_2>0$ 则$|MF_1|-|NF_1|=-t_1-t_2$,或者 $|MF_1|-|NF_1|=t_1+t_2$ 则$||MF_1|-|NF_1||=|t_1+t_2|=\cfrac{12\sqrt{3}}{13}$。 解后反思: 1、有学生得到故直线$l$的参数方程为$\begin{cases}x=-1+3m\\y=0+\sqrt{3}m \end{cases}(m为参数)$ 这个也是直线$l$的参数方程,不过这个方程不是直线的参数方程的标准形式,也就是说$m$和$t$的含义不一样。 2、我们可以将这个非标准形式的参数方程转化为标准形式的参数方程。如下转化: $\begin{cases}x=-1+3m=-1+\cfrac{3}{\sqrt{3^2+(\sqrt{3})^2}}\cdot \sqrt{3^2+(\sqrt{3})^2}\cdot m \\y=0+\cfrac{\sqrt{3}}{\sqrt{3^2+(\sqrt{3})^2}}\cdot\sqrt{3^2+(\sqrt{3})^2}\cdot m \end{cases}(m为参数)$ 即$\begin{cases}x=-1+\cfrac{3}{2\sqrt{3}}\cdot 2\sqrt{3}\cdot m \\y=\cfrac{\sqrt{3}}{2\sqrt{3}}\cdot 2\sqrt{3}\cdot m \end{cases}(m为参数)$ $\begin{cases}x=-1+\cfrac{\sqrt{3}}{2}\cdot 2\sqrt{3}\cdot m \\y=\cfrac{1}{2}\cdot 2\sqrt{3}\cdot m \end{cases}(m为参数)$ 此时令$2\sqrt{3}m=t$,则上述参数方程变形为 即$\begin{cases}x=-1+\cfrac{\sqrt{3}}{2}\cdot t\\y=\cfrac{1}{2}\cdot t \end{cases}(t为参数)$

转载于:https://www.cnblogs.com/wanghai0666/p/8909006.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值