LeetCode 53. Maximum Subarray

方法一:DP

以前做OJ的时候都想不通为什么是DP,现在终于搞明白了。

一开始想的时候,想着 dp[i] 为下标0~i元素最大的字串和。

dp[i] = max {  dp[i-1]         a[i]不在subarry中

                      dp[i-1]+ a[i]        在subarray中  承接之前的subarray     

                      a[i]  }                  在subarray中  新开一个subarray         

这个状态转移方程是有问题的,因为没法确定dp[i-1]是否在subarray中,所以dp[i-1]+ a[i]这里是不对的。

 

因此直接一步到位解这个问题是不行的。根据上述分析,可以把问题拆分成两部分:

f[i] 表示以a[i]结尾的最大子串和,dp[i] 表示下标0~i元素所包括的最大子串和。目标则是dp[n-1]。

f[0]=a[0], dp[0]=a[0];

f[i] = max{ f[i-1]+a[i]       承接之前的subarray

                  a[i] }          新开一个subarray           

dp[i] = max{ dp[i-1]                 subarray不包括a[i]

                     f[i] }                subarray包括a[i]

实际上就是把最开始的思路分成了两步。由于f[i]和dp[i]的求解的过程中都只依赖上一个状态的元素,因此空间复杂度可以从O(n)降到O(1)。

 

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int max_so_far=nums[0];
        int max_ending_here=nums[0];
        
        for (int i=1;i<nums.size();++i){
            max_ending_here = max(max_ending_here+nums[i], nums[i]);
            max_so_far = max(max_so_far, max_ending_here);
        }
        return max_so_far;
    }
};

 

 

 方法二:Divide and Conquer

算法导论里divide and conquer就以maximum subarray为例。思路也比较简单,数组可以分成两部分,最大字串和要么在两边,要么在中间。

T(n) = 2T(n/2)+O(n),因此时间复杂度O(nlogn)

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        return maxSubArray(nums, 0, nums.size()-1);
    }
    
    int maxSubArray(vector<int> &nums, int low, int high){
        if (low==high) return nums[low];
        
        int mid=(low+high)/2;
        int leftMax=maxSubArray(nums,low,mid);
        int rightMax=maxSubArray(nums,mid+1,high);
        
        int leftSum=INT_MIN;
        int sum=0;
        for (int i=mid;i>=low;--i){
            sum += nums[i];
            leftSum = max(leftSum, sum);
        }
        int rightSum=INT_MIN;
        sum = 0;
        for (int i=mid+1;i<=high;++i){
            sum += nums[i];
            rightSum = max(rightSum, sum);
        }
        int crossingMax=leftSum+rightSum;
        
        return max(crossingMax, max(leftMax,rightMax));
    }
};

 

 

 

转载于:https://www.cnblogs.com/hankunyan/p/8979632.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值