2019春总结作业

本学期学习总结与未来努力方向

一、我学到的内容(整理本课程所学,用思维导图的方式,思维导图的工具可以使用:XMind)

1591360-20190621125150028-165065160.png

二、我的收获(包括我完成的所有作业的链接+收获)

作业名作业链接收获
第二周作业https://www.cnblogs.com/gsyx/p/10502643.html学会处理文件
第三周作业https://www.cnblogs.com/gsyx/p/10539653.html二维指针的运用
第四周作业https://www.cnblogs.com/gsyx/p/10579943.html选择排序法的使用
第五周作业https://www.cnblogs.com/gsyx/p/10621383.html字符串的定义与使用
第六周作业https://www.cnblogs.com/gsyx/p/10652333.html指针的使用
第七周作业https://www.cnblogs.com/gsyx/p/10686426.html指针数组的使用
第八周作业https://www.cnblogs.com/gsyx/p/10732605.html字符串和字符指针,常用的字符串处理函数
第九周作业https://www.cnblogs.com/gsyx/p/10775666.html结构变量的使用
第十周作业https://www.cnblogs.com/gsyx/p/10798119.html1.面试的技巧 2.有效的记忆方法 3.提问的技巧
第十一周作业https://www.cnblogs.com/gsyx/p/10844312.html递归函数的使用
第十二周作业https://www.cnblogs.com/gsyx/p/10883014.html二维指针,指针数组,函数指针,线性链表
第二次课程设计实验报告https://www.cnblogs.com/gsyx/p/10954752.html如何使用码云与Git,游戏设计的步骤
第三次课程设计实验报告https://www.cnblogs.com/gsyx/p/10988130.htmlvisual的使用
第四次课程设计实验报告https://www.cnblogs.com/gsyx/p/11027844.html使用图片与声音素材完善游戏

这学期我感觉收获还是很多的,相比于上学期进步了很多。这学期有了结对搭档,帮助了我很多,他都会让我自己先做题,然后指出我的错误,我觉得这样对我的提升很大。上学期我遇到难题就会找大佬,但这学期我会自己先去尝试着做,再让别人指出错误,我觉得这是我改变很大的一个地方,然后让我明白,做一件事情,畏首畏尾是做不好的,只要开始了,就会觉得其实从开始到完成的这个过程好像也没有想象中那么难,可能会做错,那就从头再来。这学期做的这些博客园作业,虽然有时候觉得很麻烦,但还是学到了不少,比如怎样画好流程图,让别人能准确的读懂你的思路,怎样画好折线图,让自己能看到自己的变化。最后这几周的游戏设计也学到了很多,要去做一个好的游戏还是有难度的,小组之间的合作很重要,每个人负责一个部分,最后整合到一起,效率就会高。

三、自我检讨(回顾寒假作业中提到的对自己的期待,有没有没做到的?反思本学期没做好的地方)

说到寒假,寒假作业我没有做的很认真,开学的时候我希望自己可以做题目的时候不需要去问别人,可以自己找到错误,改正错误,但还是很多题目要问别人。这学期虽然比上学期好,但还是有一些问题:1.有时候上课没有认真听,老师讲到一些较难理解的地方的时候,因为自己有些没听懂,后面就没有很认真的去听了;2.下课后只是做了题目,并没有把书本上的知识再去复习,没有记在脑子里;3.每周学习这门课的时间也不多,往往只是做作业的时间在学习,平时没有很多的思考学习。

四、本学期的改进与优化(结合上学期的总结,谈谈自己改进和优化了什么,起到了什么作用)

和上学期相比,这学期改进了做题时的态度,上学期做题时经常看别人的代码,没有自己独立的思路,但是这学期都会自己先想思路然后设计代码,这让我在遇到难题时不会退缩,会去尝试。

五、量化的自我评价(指标包括:代码行数、博客字数、总计学习小时数、成绩曲线,指标请用图形的方式给出,并请根据指标分析自己的学习情况)

学习量化指标图

1591360-20190621133442558-1898679434.png

成绩曲线

1591360-20190621132423859-901554830.png

分析:学习的时间还是太少了,写的代码也太少了,平时还是要多做题目,作业分数也是起起伏伏,后面几周有下滑,应该吧后面几周的知识再去复习巩固一遍。

六.我努力的方向

暑假期间我希望自己可以把书本上的知识再巩固一遍,把以前做过的题目再复习一遍,把自己不会的地方再去找视频学习一下,以便于为以后的学习打下良好的基础

转载于:https://www.cnblogs.com/gsyx/p/11064076.html

提供了一个详细的MATLAB仿真程序,用于实现自回归(AR)模型的功率谱估计。该程序基于经典的数字信号处理教材——《数字信号处理理论、算法与实现》第三版中的相关内容(第545-547页),旨在帮助学习者理解和实践AR模型在功率谱估计中的应用。 简介 AR模型是一种常用的时间序列分析方法,通过建立当前值与其过去值之间的线性关系来描述时间序列的动态特性。功率谱估计是信号处理中的关键环节,用于揭示信号频率成分的分布。本仿真通过自相关方法实现AR模型参数的估计,并进而计算信号的功率谱。 特点 含详细注释:代码中添加了丰富的注释,便于初学者理解每一步的计算逻辑和目的。 参数可调:用户可根据需要调整AR模型的阶数(p值)、信号长度等参数,以适应不同的信号分析需求。 理论联系实际:通过将书本知识转化为实践操作,加深对AR模型及其在功率谱估计中应用的理解。 使用说明 环境要求:确保你的计算机上已安装MATLAB,并且版本适合运行提供的脚本。 加载脚本:将提供的MATLAB文件导入到MATLAB的工作环境中。 修改配置:根据需要修改代码中的参数配置,如AR模型的阶数等。 运行仿真:执行脚本,观察并分析输出结果,包括自回归模型的系数以及估算出的功率谱。 学习与分析:通过对比不同参数下的结果,深入理解AR模型在功率谱估计中的行为。 注意事项 在使用过程中,可能需要基础的数字信号处理知识以便更好地理解代码背后的数学原理。 请确保你的MATLAB环境已正确设置,能够支持脚本中的所有函数和运算。 结论 此资源对于研究信号处理、通信工程或是进行相关学术研究的学生和科研人员来说是一个宝贵的工具。它不仅提供了理论知识的具体实现,也是提升实践技能的优秀案例。通过动手操作,你将更加熟练地掌握AR模型及其在功率谱估计中的应用技巧。 开始探索,深入了解AR模型的力量,解开信号隐藏的秘密吧!
提供了关于时间序列分析与预测的宝贵资源,特别聚焦于**自回归积分滑动平均模型(ARIMA)**及其应用。对于那些希望深入理解并实践时间序列建模的学者、研究人员以及数据分析爱好者来说,这是一个不可或缺的学习材料。本资源不仅包括了详细的理论讲解,涵盖了时间序列分析的基础,如移动平均(MA)、自回归(AR)、指数平滑等关键概念,而且通过具体的ARIMA模型解析,搭配MATLAB编程实现实例,帮助用户从理论到实践全面掌握这一重要统计工具。 内容概览 理论讲解: 深入浅出地介绍了时间序列分析的基本原理,重点阐述ARIMA模型的构建步骤,包括如何识别模型的参数(p,d,q),以及其在处理非平稳数据中的作用。 MATLAB代码实现: 提供了多个ARIMA模型的MATLAB实现示例,这些代码覆盖了从数据准备、模型拟合、诊断检验到预测的全过程,是学习如何利用MATLAB进行时间序列分析的实用工具。 实例分析: 包括不同行业或领域的实际案例研究,展示如何应用ARIMA及其它时间序列方法解决真实世界的数据预测问题,增强理解和应用能力。 文件结构 时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar: 主要资源压缩包,解压后包含文档和MATLAB代码文件夹。 文档: 提供了理论知识讲解。 MATLAB代码: 实现了文中讨论的各种模型,附带注释,便于理解与修改。 使用指南 下载资源: 点击下载“时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar”文件。 解压文件: 解压缩至本地,确保你可以访问文档和代码。 环境准备: 确保你的电脑上已安装MATLAB,并熟悉基本操作。 学习流程: 首先阅读文档理解时间序列分析的理论基础,然后逐步跟随MATLAB代码示例进行实践。 实践应用: 尝试将所学应用到自己的数据集上,调整参数以优化模型性能。 注意事项 请根据M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值