Google Map 看世界

博客介绍借助Google Map能带来震撼、Cool的感觉,可从太空视角看我们的家园。提及祖国家园的青藏高原全貌、秦岭造山带等,还回忆硕士论文工作地点,感慨若当时有此资源会更好,最后还提到了北京天安门。
Google Map的感觉可以用几个词描述:震撼,Cool,那么就在此看看借助Google从太空看到的我们的家园。

我们的祖国家园:
20050623001.jpg

青藏高原全貌:
20050623002.jpg

秦岭造山带
20050623003.jpg

硕士论文的工作地点:巴山弧
20050623004.jpg 

硕士论文工作过的一个山沟 要是当年有这么好的资源,该会有多好。大概毕业2年多后,自己用50多万分辨率的DEM制作了这个地区的Hill Shade,才发现原来很多想法可能问题很大,只因为一直无法从这么直观和宏观的角度去看。
20050623005.jpg

再看几个轻松的, 北京天安门
20050623006.jpg

内容概要:本文介绍了一个基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型,用于光伏功率预测,结合Matlab代码实现。该模型充分考虑光伏发电的不确定性与时空相关性,利用MBLS提升预测精度与学习效率,并通过Copula函数刻画多个光伏站点间预测误差的非线性相关结构,实现高精度的概率区间预测。文档还列举了大量相关的科研方向与Matlab仿真应用案例,涵盖风电预测、负荷预测、综合能源系统优化、路径规划、电力系统分析等多个领域,展示了其在可再生能源预测与智能系统优化中的广泛应用前景。; 适合人群:具备一定Matlab编程基础,从事可再生能源预测、电力系统优【Copula光伏功率预测】基于单调广义学习系统(MBLS)和Copula理论的时空概率预测模型(Matlab代码实现)化、智能算法应用等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:① 提升光伏功率预测的准确性与可靠性,尤其适用于多站点协同预测场景;② 掌握MBLS与Copula理论在时空相关性建模中的融合方法,构建概率预测框架;③ 借助Matlab代码实现,开展学术复现、科研创新或实际工程项目开发。; 阅读建议:建议结合文中提供的Matlab代码进行实践操作,重点理解MBLS的建模流程与Copula函数在相关性分析中的具体应用,同时可参考文档列出的相关研究方向拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值