pip install cryptography error

build/temp.linux-x86_64-2.7/_openssl.c:434:30: fatal error: openssl/opensslv.h: No such file or directory

 

143623_QvBz_1406293.png

 

2. 解决办法

  # cd 

  # vim .bash_profile

PKG_PATH=/opt/cloud/chef/embedded

export PKG_CONFIG_PATH=$PKG_PATH/lib/pkgconfig:$PKG_PATH/lib/

export LD_LIBRARY_PATH=$PKG_PATH/lib/

  保存并退出

 # source .bash_profile

转载于:https://my.oschina.net/ayy/blog/1535145

<think>好的,我现在需要帮助用户解决两个问题:一是pip install -r requirements.txt下载失败,二是mkl_intel_thread.2.dll模块缺失的问题。用户之前提到的MKL错误可能与Python环境中的库冲突有关,现在又加上pip安装依赖失败,需要综合考虑。 首先,pip安装失败可能有多种原因,比如网络问题、依赖项版本冲突、或者某些包需要编译工具。用户可能在国内,所以网络连接可能不稳定,或者访问PyPI速度慢。这时候建议使用镜像源,比如清华源或者阿里云,来加速下载。另外,有些包可能需要特定的Python版本或者系统构建工具,比如Visual C++ Build Tools,用户可能没有安装这些,导致编译失败。 其次,关于mkl_intel_thread.2.dll缺失的问题,之前已经给出了一些解决方案,比如检查conda和pip混合安装、重装MKL、设置环境变量等。用户现在可能是在安装requirements.txt时又遇到了这个问题,可能是因为某些包依赖了不同版本的MKL,或者环境被污染了。需要确保环境中没有混用conda和pip安装的包,特别是numpy、scipy等科学计算库,因为它们可能链接到不同的BLAS库(如MKL或OpenBLAS),导致冲突。 接下来,需要分步骤解决这两个问题。首先处理pip安装失败的问题,然后再处理MKL的DLL缺失问题。可能需要先解决pip安装的问题,因为如果依赖项没有正确安装,可能会导致后续运行时出现问题。 对于pip安装失败,可以建议用户使用镜像源,升级pip和setuptools,检查错误日志,安装编译工具,或者手动安装有问题的包。如果某些包在requirements.txt中有版本冲突,可能需要调整版本号。 对于MKL的问题,可能需要确保环境的一致性,使用conda安装MKL,创建干净的环境,设置正确的环境变量,或者处理第三方软件的干扰。此外,用户可能在安装某些包时,比如paddlepaddle,需要特定的CUDA和cuDNN版本,这可能导致DLL错误,需要检查这些依赖项是否正确安装。 需要综合之前的建议,结合用户当前的问题,给出具体的步骤。比如,先解决pip安装问题,确保所有依赖项正确安装,然后检查MKL相关的问题,可能需要创建新的conda环境,避免混合安装,使用conda安装必要的包,最后设置环境变量。 另外,用户之前提到过混用conda和pip可能导致问题,所以需要强调统一使用conda安装,或者在必要时使用pip安装但注意依赖关系。同时,确保PATH环境变量包含MKL的路径,避免DLL找不到的问题。 可能需要检查用户是否在Windows系统上,因为路径和依赖管理有所不同,特别是在设置环境变量时。用户可能需要手动添加conda环境的Library\bin目录到PATH中,并重启终端让更改生效。 最后,验证步骤也很重要,比如运行测试脚本检查NumPy是否正确链接到MKL,以及确保所有依赖项安装成功。这样用户能够确认问题是否解决。</think>### 分步解决方案:解决 `pip install` 失败与 MKL 动态库缺失问题 --- #### **阶段1:解决 `pip install -r requirements.txt` 下载失败** ##### **步骤1:使用国内镜像源加速下载** **问题原因**: 直接连接PyPI官方源可能因网络限制导致超时或下载中断(尤其在境内网络环境)[^1]。 **解决方案**: 在命令中添加清华镜像源: ```bash pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn ``` - **备选镜像**: - 阿里云:`https://mirrors.aliyun.com/pypi/simple/` - 豆瓣:`https://pypi.douban.com/simple/` ##### **步骤2:升级 pip 和 setuptools** **关键操作**: ```bash python -m pip install --upgrade pip setuptools wheel ``` - **作用**: 解决旧版本工具链对依赖解析不兼容的问题(常见于 `cryptography`、`tensorflow` 等包)。 ##### **步骤3:检查具体报错包并单独安装** **操作流程**: 1. 查看 `requirements.txt` 中哪个包安装失败(错误日志会明确提示) 2. 手动安装该包并添加编译参数: ```bash pip install package_name --global-option="--verbose" --no-cache-dir ``` - **示例**: 若 `numpy` 安装失败,可能缺少C编译器,需安装 [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/)。 --- #### **阶段2:修复 `mkl_intel_thread.2.dll` 缺失问题** ##### **步骤1:统一包管理工具(优先使用conda)** **关键原因**: 混用 `conda` 和 `pip` 安装科学计算库(如 `numpy`、`scipy`)会导致 MKL 动态库版本冲突[^2]。 **操作步骤**: 1. 创建纯净的 conda 环境: ```bash conda create -n my_project_env python=3.9 conda activate my_project_env ``` 2. **通过 conda 安装核心依赖**: ```bash conda install numpy scipy mkl=2023.2 -c intel ``` 3. **补充安装仅支持 pip 的包**: ```bash pip install -r requirements.txt --ignore-installed ``` ##### **步骤2:强制修复 MKL 依赖** **方法1:通过 conda 直接重装** ```bash conda install -c intel mkl=2023.2 --force-reinstall ``` **方法2:手动配置环境变量** 1. 找到 MKL 动态库路径(如 `C:\Anaconda3\envs\my_project_env\Library\bin`) 2. 将此路径添加到系统 `PATH` 环境变量: ```powershell # PowerShell(管理员权限) [Environment]::SetEnvironmentVariable("PATH", "$env:PATH;C:\Anaconda3\envs\my_project_env\Library\bin", "Machine") ``` 3. 重启终端并验证: ```bash echo %PATH% # 检查路径是否存在 ``` ##### **步骤3:处理第三方依赖冲突** **典型场景**: 若 `requirements.txt` 包含 `paddlepaddle`、`tensorflow` 等框架,需检查CUDA/cuDNN版本匹配: 1. **验证CUDA版本**: ```bash nvcc --version # 输出应为 CUDA 11.2+ ``` 2. **安装匹配的 paddlepaddle 版本**: ```bash conda install paddlepaddle-gpu==2.4.2 cudatoolkit=11.7 -c paddle -c conda-forge ``` --- ### 验证修复结果 1. **检查 MKL 动态库加载**: ```python import numpy as np print(np.__config__.show()) # 输出应包含 'mkl_info' ``` 2. **运行项目主程序**: ```bash python your_main_script.py # 确认无DLL缺失报错 ``` --- ### 高阶调试技巧 | 问题现象 | 快速诊断方法 | 解决方案 | |--------------------------|----------------------------------|-----------------------------------| | `ERROR: Could not build wheels` | 检查是否缺少编译器(如gcc/VC++) | 安装 [Microsoft C++ Build Tools](https://visualstudio.microsoft.com/visual-cpp-build-tools/) | | `SSL Certificate Verify Failed` | 临时关闭SSL验证 | 添加 `--trusted-host pypi.tuna.tsinghua.edu.cn` | | `PreconditionNotMetError`(PaddlePaddle) | 检查CUDA/cuDNN版本 | 使用 `conda install cudnn=8.9.2` 强制匹配版本 | --- ### 相关问题 1. 如何永久配置 conda 和 pip 使用国内镜像源? 2. 在Windows中如何彻底卸载冲突的CUDA版本? 3. 为什么conda环境中的Python包比pip安装的更稳定? [^1]: PyPI官方源在部分地区访问受限,镜像源通过CDN加速可显著提升成功率 [^2]: `conda` 会自动解决MKL与科学计算包的依赖关系,而`pip`可能覆盖为OpenBLAS版本
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值