函数习题

Cnblogs_LT02.bmp\(\fbox{例0}\)【2019届凤中高三理科数学函数及其表示课时作业第3题】

已知\(f(\cfrac{1}{2}x-1)=2x-5\),且\(f(a)=6\),求\(a\)的值________。

【法1】令\(\cfrac{1}{2}-1=t\),则\(x=2(t+1)\)

\(f(t)=4(t+1)-5=4t-1\),即\(f(x)=4x-1\)

现有\(f(a)=6\),即\(4a-1=6\),解得\(a=\cfrac{7}{4}\)

【法2】利用函数的概念求解;

\(2x-5=6\),则\(x=\cfrac{11}{2}\)

将其代入\(\cfrac{1}{2}x-1=\cfrac{1}{2}\cdot \cfrac{11}{2}-1=\cfrac{7}{4}\)

\(a=\cfrac{7}{4}\)

Cnblogs_LT02.bmp\(\fbox{例1}\)
已知函数\(f(x)=x^3-x^2-x+\cfrac{11}{27}\),求证:函数\(f(x)\)的图像关于点\((\cfrac{1}{3},0)\)对称。

【题型】函数图像的对称性证明

法1:利用思路\(f(\cfrac{2}{3}-x)+f(x)=0\;\;\)证明;

法2:将函数\(f(x)\)向左平移\(\cfrac{1}{3}\)个单位,得到\(f(x+\cfrac{1}{3})=x^3-\cfrac{4}{3}x=g(x)\),然后证明\(g(x)\)为奇函数,从而证明函数\(f(x)\)的图像关于点\((\cfrac{1}{3},0)\)对称。

Cnblogs_LT02.bmp\(\fbox{例2}\)

已知函数\(f(x)=x^2+bx+c(b,c\in R)\),在区间\((0,1)\)内有两个不同的零点,则\((1+b)c+c^2\)的取值范围是多少?\((0,\cfrac{1}{16})\)

【题型】方程根的分布,均值不等式
法1:令函数的两个零点是\(x_1,x_2\),则容易知道\(x_1,x_2\in (0,1)\),则\(f(x)=(x-x_1)(x-x_2)\),由题目可知,\(f(0)=c=x_1x_2>0\)\(f(1)=(1-x_1)(1-x_2)=1+b+c\)
\((1+b)c+c^2=(1+b+c)c=x_1x_2(1-x_1)(1-x_2)=[x_1(1-x_1)][x_2(1-x_2)]<(\cfrac{x_1+1-x_1}{2})^2(\cfrac{x_2+1-x_2}{2})^2=\cfrac{1}{16}\).
\(f(0)f(1)>0,(1+b+c)c>0\),故\((1+b)c+c^2\in(0,\cfrac{1}{16})\).
反思1:本题先由已知条件转化得到\(\begin{cases} &f(0)=c>0\\ &f(1)=1+b+c>0 \\ &\Delta=b^2-4c>0 \\ &0<-\cfrac{b}{2}<1\end{cases}\),再求\((1+b)c+c^2\)的取值范围,这个思路的转化很顺畅,但是不能正确求解。
引申:是否可以利用向量,借助形来求解呢?比如定义\(\vec{a}=(1+b,c),\vec{b}=(c,c)\),从而转化为求向量\(\vec{a}\cdot\vec{b}\)的取值范围?

Cnblogs_LT02.bmp\(\fbox{例3}\)
设函数\(f(x)\),若对于在定义域内存在实数\(x\)满足\(f(-x)=-f(x)\),则称函数\(f(x)\)为“局部奇函数”。若函数\(f(x)=4^x-m\cdot 2^{x+1}+m^2-3\)是定义在\(R\)上的“局部奇函数”,则实数\(m\)的取值范围是多少?

分析:由题目可知,方程\(f(-x)+f(x)=0\)\(R\)上有解,即\(4^x+4^{-x}-m(2^{x+1}+2^{-x+1})+2(m^2-3)=0\)有解,先令\(2^x=t>0\),得到\(t^2+\cfrac{1}{t^2}-2m(t+\cfrac{1}{t})+2(m^2-3)=0\),再令\(t+\cfrac{1}{t}=n\ge 2\),则方程变形为\(n^2-2mn+2m^2-8=0\)\(n\in [2,+\infty)\)上有解,令\(F(n)=n^2-2mn+2m^2-8(n \ge 2)\)

\(1^。\)\(F(2)\leq 0\)时,由零点存在性定理可知,只需要\(F(2)\leq 0\),由\(F(2)\leq 0\Longrightarrow 1-\sqrt{3}\leq m \leq 1+\sqrt{3}\)

\(2^。\)\(F(2)> 0\)时,还需要\(\Delta \ge 0\)且对称轴大于2,由\(\begin{cases} &F(2)> 0\\ &\Delta \ge 0 \\ &m>2\end{cases}\Longrightarrow \begin{cases} &m<1-\sqrt{3},m>1+\sqrt{3}\\ &-2\sqrt{2}\leq m \leq 2\sqrt{2} \\ & m>2\end{cases}\Longrightarrow 1+\sqrt{3}< m \leq 2\sqrt{2}\)

综上所述,\(m\)的取值范围是\([1-\sqrt{3},2\sqrt{2}]\).

Cnblogs_LT02.bmp\(\fbox{同类例}\)

若函数\(f(x)=2^x+m\)是定义在区间\([-1,1]\)上的“局部奇函数”,求实数\(m\)的取值范围。

分析:由题目可知,方程\(f(-x)+f(x)=0\)\(R\)上有解,由于本题目的参数可以顺利分离,故由\(2^{-x}+m+2^x+m=0\)得到\(-2m=2^{-x}+2^x\),令\(2^{-x}+2^x=g(x)\),借助导数工具就可以做出函数\(g(x)\)的大致图像。

由于\(g(x)\)为偶函数,故只讨论\(x>0\)的单调性情况,\(g'(x)=2^xln2-2^{-x}ln2=ln2(2^x-2^{-x})>0\),故\(x>0\)时,\(g(x)\)单调递增,即\(x\in [-1,0],g(x)\searrow;x\in [0,1],g(x)\nearrow;\)

所以\(g(x)\in [g(0),g(1)]\),即\(g(x)\in [2,\cfrac{5}{2}]\),要使原方程有解,则\(2\leq -2m\leq \cfrac{5}{2}\),解得\(m\in [-\cfrac{5}{4},-1]\)

Cnblogs_LT02.bmp\(\fbox{例5}\)
设函数\(f(x) = \begin{cases}x,&0<x\leq 1 \\ \cfrac{1}{f(x+1)}-1,&-1<x<0 \end{cases}\)\(g(x)=f(x)-4mx-m\),其中\(m\neq 0\),若函数\(g(x)\)在区间\((-1,1)\)上有且仅有一个零点,则实数\(m\)的取值范围是___________.

分析:由于\(-1<x<0\),则\(0<x+1<1\),故\(\cfrac{1}{f(x+1)}=\cfrac{1}{x+1}\),故函数\(f(x)\)可以化简为\(f(x) = \begin{cases}x, &0<x\leq 1 \\ \cfrac{1}{x+1}-1 &-1<x<0 \end{cases}\),这样我们就能容易做出其图像了,课件地址:https://www.desmos.com/calculator/7t9muzsnix

在同一坐标系中分别做出函数\(f(x)\)和函数\(h(x)=4m(x+\cfrac{1}{4})\),有课件可以看出只要\(4m\ge k_{AB}\)\(4m=k_{AC}\),其中\(4m\ge k_{AB}=\cfrac{1-0}{1-(-\frac{1}{4})}=\cfrac{4}{5}\),从而求得\(m\ge \cfrac{1}{5}\),剩下的难点是求点\(C\)的坐标。以下用导数方法求解。

先由\(-1<x<0\)\(f(x)=\cfrac{1}{x+1}-1\),求得\(f'(x)=-\cfrac{1}{(x+1)^2}\),令切点\(C(x_0,y_0)\),则有

\(\begin{cases} &f'(x_0)=-\cfrac{1}{(x_0+1)^2}=4m ①\\ &y_0=\cfrac{1}{x_0+1}-1 ②\\&y_0=4mx_0+m=4m(x_0+\cfrac{1}{4}) ③\\&x_0\in(-1,0)\\&y_0\in(0,+\infty)\end{cases}\)

将①②代入③,目的求解切点\(C(x_0,y_0)\),得到\(-\cfrac{1}{(x_0+1)^2}(x_0+\cfrac{1}{4})=\cfrac{1}{x_0+1}-1\),解得\(x_0=-\cfrac{1}{2}\),在求得\(y_0=1\),从而知道\(k_{AC}=\cfrac{1-0}{-\cfrac{1}{2}-(-\cfrac{1}{4})}=-4\),所以\(4m=k_{AC}=-4\),解得相切时\(m=-1\)

Cnblogs_N04.bmp

Cnblogs_LT02.bmp\(\fbox{例6}\)

已知函数\(f(x) = \begin{cases}kx+2,&x\ge 0 \\ (\cfrac{1}{2})^x &x<0 \end{cases}\),若方程\(f(f(x))-\cfrac{3}{2}=0\)在实数范围内无解,则实数\(k\)的取值范围是多少?\([0,+\infty)\)

法1:(由内向外)当\(x<0\)时,\(f(x)>1\),若\(k\ge 0\)时,\(f(f(x))\ge 2\),此时其与\(y=\cfrac{3}{2}\)没有交点;

\(x\ge 0\)时,若\(k\ge 0\)时,\(f(x)\ge 2\)\(f(f(x))\ge 2\),此时其与\(y=\cfrac{3}{2}\)没有交点;故所求的实数\(k\)的取值范围是\([0,+\infty)\)

法2:(由外向内)注意到\(k\)为第一段函数射线的斜率,故可以假定\(k>0、k=0、k<0\)分别做出三个射线,再做出直线\(y=\cfrac{3}{2}\),此时

Cnblogs_LT02.bmp\(\fbox{例7}\)
已知正数\(x、y\)满足\(x+2\sqrt{2xy}\leq \lambda(x+y)\)恒成立,则实数\(\lambda\)的最小值为_______.

分析:容易想到分离参数得到\(\lambda\ge \cfrac{x+2\sqrt{2xy}}{x+y}\),接下来自然是想办法求右端函数的取值范围,但是右端是二元分式函数,所以考虑变量集中,得到\(\cfrac{x+2\sqrt{2xy}}{x+y}=\cfrac{1+\cfrac{2\sqrt{2xy}}{x}}{1+\cfrac{y}{x}}=\cfrac{1+2\sqrt{2}\sqrt{\cfrac{y}{x}}}{1+\cfrac{y}{x}}\),此时令\(\sqrt{\cfrac{y}{x}}=t>0\),则原式变形为\(\cfrac{x+2\sqrt{2xy}}{x+y}=\cfrac{1+2\sqrt{2}t}{1+t^2}\)

到此可以考虑这几种思路:函数导数法求最值,均值不等式求最值,转化为利用二次函数求解。

思路1:令\(h(t)=\cfrac{1+2\sqrt{2}t}{1+t^2}(t>0)\),则\(h'(t)=\cfrac{2\sqrt{2}(1+t^2)-(1+2\sqrt{2}t)\cdot 2t)}{(1+t^2)^2}=\cfrac{-2\sqrt{2}t^2-2t+2\sqrt{2}}{(1+t^2)^2}=-\cfrac{2\sqrt{2}t^2+2t-2\sqrt{2}}{(1+t^2)^2}=-\cfrac{(\sqrt{2}t+2)(2t-\sqrt{2})}{(1+t^2)^2}\)

借助导函数的分子图像得到\(t\in(0,\cfrac{\sqrt{2}}{2}]\nearrow\)\(t\in[\cfrac{\sqrt{2}}{2},\infty) \searrow\);故\(h(t)_{max}=h(\cfrac{\sqrt{2}}{2})=2\),则实数\(\lambda \ge 2\),即\(\lambda_{min}= 2\)

思路2:相同思路,点击找例11.

\(h(t)=\cfrac{1+2\sqrt{2}t}{1+t^2}(t>0)\),由于\(h(t)\)在变量集中时不太好操作,故再令

\(\begin{align*} g(t)=\cfrac{1+t^2}{1+2\sqrt{2}t}&=\cfrac{\cfrac{1}{8}(2\sqrt{2}t+1)^2-\cfrac{\sqrt{2}}{2}t-\cfrac{1}{8}+1}{2\sqrt{2}t+1} \\&=\cfrac{\cfrac{1}{8}(2\sqrt{2}t+1)^2-\cfrac{1}{4}(2\sqrt{2}t+1)+\cfrac{9}{8}}{2\sqrt{2}t+1}\\&=\cfrac{1}{8}(2\sqrt{2}t+1)+\cfrac{9}{8(2\sqrt{2}t+1)}-\cfrac{1}{4} \\& \ge 2\sqrt{\cfrac{1}{8}\cdot \cfrac{9}{8}}-\cfrac{1}{4}=2\cdot\cfrac{3}{8}-\cfrac{1}{4}=\cfrac{1}{2}\end{align*}\)

当且仅当\(\cfrac{1}{8}(2\sqrt{2}t+1)=\cfrac{9}{8(2\sqrt{2}t+1)}\),即\(t=\cfrac{\sqrt{2}}{2}\)时取到等号。

再来看看代换法,个中滋味你自己体会吧,令\(1+2\sqrt{2}t=m\),则\(t=\cfrac{m-1}{2\sqrt{2}}\)

\(\begin{align*}g(t)=\cfrac{1+t^2}{1+2\sqrt{2}t}&=\cfrac{1+\cfrac{(m-1)^2}{8}}{m}\\&=\cfrac{1}{m}+\cfrac{m^2-2m+1}{8m}\\&=\cfrac{1}{m}+\cfrac{m}{8}-\cfrac{1}{4}+\cfrac{1}{8m}\\&=\cfrac{m}{8}+\cfrac{9}{8m}-\cfrac{1}{4}\\&=\cfrac{1+2\sqrt{2}t}{8}+\cfrac{9}{8(1+2\sqrt{2}t)}-\cfrac{1}{4} \\& \ge 2\sqrt{\cfrac{1}{8}\cdot \cfrac{9}{8}}-\cfrac{1}{4}=2\cdot\cfrac{3}{8}-\cfrac{1}{4}=\cfrac{1}{2}\end{align*}\)

当且仅当\(\cfrac{1}{8}(2\sqrt{2}t+1)=\cfrac{9}{8(2\sqrt{2}t+1)}\),即\(t=\cfrac{\sqrt{2}}{2}\)时取到等号。即\(g(t)_{min}=\cfrac{1}{2}\),故\(h(t)_{max}=2\),故实数\(\lambda \ge 2\),即\(\lambda_{min}= 2\)

思路3:先换元变换得到,\(1+2\sqrt{2}t\leq \lambda +\lambda t^2(t>0)\)恒成立,即\(\lambda t^2-2\sqrt{2}t+\lambda-1\ge 0\)\(t>0\)恒成立,令\(f(t)=\lambda t^2-2\sqrt{2}t+\lambda-1\),则原命题等价于
\(\begin{cases} &\lambda >0 \\ &\Delta \leq 0\end{cases}\) 或者\(\begin{cases} &\lambda >0 \\ &\Delta > 0 \\ &\cfrac{\sqrt{2}}{\lambda}<0 \\ &f(0)>0\end{cases}\),解得\(\lambda \ge 2\),即\(\lambda_{min}= 2\)

思路4:先变形得到\(\lambda\ge \cfrac{x+2\sqrt{2xy}}{x+y}\),又由于\(2\sqrt{2xy}=2\cdot\sqrt{x}\cdot\sqrt{2y}\leq x+2y\),故\(\cfrac{x+2\sqrt{2xy}}{x+y}\leq \cfrac{x+x+2y}{x+y}=2\),当且仅当\(x=2y\)时取到等号,故故实数\(\lambda \ge 2\),即\(\lambda_{min}= 2\)

Cnblogs_LT02.bmp\(\fbox{例8}\)
已知函数\(f(x)\)\(R\)上的偶函数,且对任意互异的实数\(x_1,x_2\in [0,+\infty)\),都有\((x_1-x_2)[f(x_1)-f(x_2)]>0\)成立,若实数\(x、y\)满足不等式\(f(x-2)\ge f(y-4)\),则当\(x\in [1,2]\)时,\(\cfrac{xy}{3x^2+xy-2y^2}\)的取值范围是_________.

分析:本题目是线性规划形式给出双变量\(x、y\)的取值范围,求双变量函数的取值范围问题,比较复杂。

先由函数是偶函数可知,\(f(|x-2|)\ge f(|y-4|)\),再由其单调性知道\(|x-2|\ge |y-4|\),去掉绝对值符号得到$- |x-2|\leq y-4 \leq |x-2| $ ,又因为\(x\in[1,2]\),则\(x-2\in[-1,0]\),故\(x-2\leq y-4\leq2-x\),即\(\begin{cases}&x-2\leq y-4 \\ & y-4 \leq 2-x \\ & 1 \leq x \leq 2 \end{cases}\),做出如图的可行域;课件地址:,接下来用代换减少变量的个数,

\(\cfrac{xy}{3x^2+xy-2y^2}=\cfrac{\cfrac{xy}{x^2}}{\cfrac{3x^2+xy-2y^2}{x^2}}=\cfrac{\cfrac{y}{x}}{3+\cfrac{y}{x}-2(\cfrac{y}{x})^2}=\cfrac{t}{3+t-2t^2}=\cfrac{1}{\cfrac{3}{t}+1-2t}(\cfrac{y}{x}=t)\),此时需要借助可行域判断\(t\)的范围,结合可行域图像以及\(t\)的几何意义(经过可行域内的动点和原点的直线的斜率),可知\(t\in [2,5]\),故至此问题转化为已知\(t\in [2,5]\),求\(g(t)=\cfrac{1}{\cfrac{3}{t}+1-2t}\)的取值范围问题;令\(h(t)=-2t+\cfrac{3}{t}+1\)\(h'(t)=-2-\cfrac{3}{t^2}<0\),故\(h(t)\)\(t\in [2,5]\)单调递减,故\(h(t)_{min}=h(5)=-\cfrac{42}{5}\)\(h(t)_{max}=h(2)=-\cfrac{3}{2}\),则\(g(t)_{max}=g(5)=-\cfrac{5}{42}\)\(g(t)_{min}=g(2)=-\cfrac{2}{3}\),故所求原式的取值范围是\([-\cfrac{2}{3},-\cfrac{5}{42}]\)

Cnblogs_LT02.bmp\(\fbox{例9}\)

已知函数\(f(x)=ax-x^2-lnx\)有极值,且其极值之和大于\(5+ln2\),求实数\(a\)的取值范围。

分析:由题目可知方程\(f'(x)=a-2x-\cfrac{1}{x}=0\)\((0,+\infty)\)上有解,即\(\cfrac{ax-2x^2-1}{x}=0\)有解,令函数\(g(x)=-2x^2+ax-1\),则\(g(x)=0\)有两个不相等的正实数根\(x_1,x_2\)

故满足\(\begin{cases}&\Delta=a^2-4\times(-2)\times(-1)>0 \\ &x_1+x_2=\cfrac{a}{2} \\ &x_1x_2=\cfrac{1}{2}\end{cases}\),解得\(a>2\sqrt{2}\)

而其极值之和为

\(\begin{align*}f(x_1)+f(x_2)&=ax_1-x_1^2-lnx_1+ax_2-x_2^2-lnx_2\\&=a(x_1+x_2)-(x_1^2+x_2^2)-lnx_1x_2\\&=a(x_1+x_2)-[(x_1+x_2)^2-2x_1x_2]-lnx_1x_2\\&=\cfrac{a^2}{2}-(\cfrac{a^2}{4}-2\times \cfrac{1}{2})-ln\cfrac{1}{2}\\&=\cfrac{a^2}{4}+1+ln2>5+ln2\end{align*}\)

解得\(a>4\),又\(a>2\sqrt{2}\),故\(a>4\).

变式:若其极值之和小于\(5+ln2\),则得到取值范围是\(2\sqrt{2}<a<4\).

Cnblogs_LT02.bmp\(\fbox{例10}\)

已知函数\(f(x)\)\(R\)上的奇函数且满足\(f(\cfrac{3}{2}-x)=f(x)\)\(f(-2)=-3\),数列\(\{a_n\}\)满足\(a_1=-1\),且\(S_n=2a_n+n\),其中\(S_n\)为其前\(n\)项和,则\(f(a_5)+f(a_6)\)的值是多少?

分析:先由奇偶性和对称性推出周期性,由\(-f(-x)=f(x)\)\(f(\cfrac{3}{2}-x)=f(x)\),得到\(f(\cfrac{3}{2}-x)=-f(-x)\),即\(f(\cfrac{3}{2}+x)=-f(x)\),所以周期\(T=3\)

再求\(a_5,a_6\)的值;此时可以利用思路一:先用\(a_n\)\(S_n\)的关系,求通项公式再求项的思路;思路二:递推关系式,此处用思路一;

\(n\ge 2\) 时,\(S_{n-1}=2a_{n-1}+(n-1)\),则\(S_n-S_{n-1}=2a_n-2a_{n-1}+n-(n-1)\),得到\(a_n=2a_{n-1}-1\);进而得到\(a_n-1=2(a_{n-1}-1)\)

故数列\(\{a_n-1\}\)是首项为\(a_1-1=-2\),公比为\(2\)的等比数列,故\(a_n-1=-2\cdot 2^{n-1}\),则\(a_n=-2^n+1\),所以\(a_5=-31,a_6=-63\)

\(f(a_5)+f(a_6)=f(-31)+f(-63)=-f(31)-f(63)=-f(1)-f(0)=-f(1)=-f(-2)=3\)

Cnblogs_LT02.bmp\(\fbox{例11}\)
若对\(\forall x,y\in R\),都有\(f(x+y)=f(x)+f(y)-2\),则函数\(g(x)=\cfrac{2x}{x^2+1}+f(x)\)的最大值与最小值的和是多少?

法1:(特殊化法),构造函数\(f(x)=2\),则由于\(f(x+y)=2\)\(f(y)=2\),满足条件\(f(x+y)=f(x)+f(y)-2\),故构造的特殊函数\(f(x)=2\)满足题意,这样\(g(x)=\cfrac{2x}{x^2+1}+2\)\(g(x)+g(-x)=4\),即函数\(g(x)\)关于点\((0,2)\)对称,那么\(g(x)_{max}+g(x)_{min}=g(x_0)+g(-x_0)=4\)

反思:若构造的函数是\(f(x)=x+2\)\(f(x)=-x+2\),此时函数\(g(x)\)就无最值,题目有点漏洞了,这时可以将条件中的\(R\)改为\([-a,a]\)

课件地址:https://www.desmos.com/calculator/swqxfmhpfz

法2:(抽象化法),由\(f(x+y)=f(x)+f(y)-2\),令\(x=y=0\),得到\(f(0)=2\);再令\(y=-x\),得到\(f(0)=f(x)+f(-x)-2\),即\(f(x)+f(-x)=4\),故函数\(f(x)\)关于点\((0,2)\)对称,又注意到函数的一部分\(h(x)=\cfrac{2x}{x^2+1}\)为奇函数,故\(g(-x)+g(x)=h(-x)+f(-x)+h(x)+f(x)=[h(-x)+h(x)]+[f(x)+f(-x)]=4\),即函数\(g(x)\)关于点\((0,2)\)对称,那么\(g(x)_{max}+g(x)_{min}=g(x_0)+g(-x_0)=4\)

Cnblogs_LT02.bmp\(\fbox{例12}\)
已知函数\(f(x)\)\(R\)上的奇函数且满足\(f(x+1)+f(x)=0\),且当\(0<x<1\)时,\(f(x)=3^{x+1}\),求\(f(log_318)+f(4)\)的值;

分析:由\(f(x+1)+f(x)=0\)得到周期\(T=2\),又函数\(f(x)\)\(R\)上的奇函数,故\(f(4)=f(0)=0\);而\(2<log_318<3\)

\(f(log_318)=f(log_318-2)=f(log_318-log_39) =f(log_32)\),又\(0<log_32<1\),故\(f(log_32)=3^{log_32+1}=3^{log_32}\cdot 3=6\)

\(f(log_318)+f(4)=6\).

Cnblogs_N05.bmp

Cnblogs_LT02.bmp\(\fbox{例13}\)
已知函数\(f(x)=x^3-3x+3-\cfrac{x}{e^x}\)\(g(x)=-(x+1)^2+a\)\(\exists x_1\in [0,2]\)\(\forall x_2\in [0,2]\),使得\(f(x_1)\leq g(x_2)\)成立,则实数\(a\)的取值范围是多少?

分析:这是一个很典型的双变量函数问题,由题目可知需要\(f(x_1)_{min}\leq g(x_2)_{min}\),由于函数\(f(x)\)中不含有参数,故对双变量函数问题我们可以“花开两朵,先表一枝”,先探究求出函数\(f(x_1)\)当$ x_1\in [0,2]$上的最小值;

\(f'(x)=3x^2-3-\cfrac{1\cdot e^x-x\cdot e^x}{(e^x)^2}=3x^2-3-\cfrac{1-x}{e^x}=3(x+1)(x-1)+\cfrac{x-1}{e^x}=(x-1)[3(x+1)+\cfrac{1}{e^x}]\),此时\([3(x+1)+\cfrac{1}{e^x}]>0\)

则有\(x\in (0,1)\)\(f'(x)<0\)\(f(x)\searrow\)\(x\in (1,2)\)\(f'(x)>0\)\(f(x)\nearrow\);故\(f(x)_{min}=f(1)=1-\cfrac{1}{e}\)

到此,问题转化为\(1-\cfrac{1}{e}\leq g(x)\)\(\forall x_2\in [0,2]\)恒成立,这时我们在从容的“令表一枝”,自然你会想到看看能否分离参数。

变形为\(a\ge (x+1)^2+1-\cfrac{1}{e}\),令\(h(x)=(x+1)^2+1-\cfrac{1}{e}\),对称轴是\(x=-1\)\(h(x)\)在区间\([0,2]\)上单调递增,

\(h(x)_{max}=h(2)=10-\cfrac{1}{e}\),即$a \ge 10-\cfrac{1}{e} $.

Cnblogs_LT02.bmp\(\fbox{例14}\)

已知实数\(a,b\)满足\(4^a=a^b\)\(log_2^a=\cfrac{a+2}{b}\),则\(ab\)的值为多少?

分析:由\(4^a=a^b\),两边取常用对数得到,\(alg4=blga ①\)

\(log_2^a=\cfrac{a+2}{b}②\),对数式化为指数式得到\(2^{\cfrac{a+2}{b}}=a\)

代入①式得到\(2alg2=blg2^{\cfrac{a+2}{b}}=b\times \cfrac{a+2}{b}lg2=(a+2)lg2\),即\(2a=a+2\),得到\(a=2\),代入\(4^a=a^b\),得到\(b=4\),故\(ab=8\).

Cnblogs_LT02.bmp\(\fbox{例15}\)

\(f(x)=\cfrac{3x-2}{2x-1}\),则\(f(\cfrac{1}{11})+f(\cfrac{2}{11})+f(\cfrac{3}{11})+\cdots+f(\cfrac{10}{11})\)的值是多少?

法1:结合要求解的条件,我们尝试求解\(f(x)+f(1-x)\)的值,结果会发现:\(f(x)+f(1-x)=3\),故有\(f(\cfrac{1}{11})+f(\cfrac{10}{11})=3\);\(f(\cfrac{2}{11})+f(\cfrac{9}{11})=3\);等等,所以\(f(\cfrac{1}{11})+f(\cfrac{2}{11})+f(\cfrac{3}{11})+\cdots+f(\cfrac{10}{11})=5[f(\cfrac{1}{11})+f(\cfrac{10}{11})]=5\times 3=15\).

法2:将函数\(f(x)\)化为部分分式为\(f(x)=\cfrac{3}{2}-\cfrac{1}{2(2x-1)}\),故函数\(f(x)\)的对称中心是\((\cfrac{1}{2},\cfrac{3}{2})\),故根据函数的对称性的数学表达可以写出\(f(x)+f(1-x)=3\);故所求式等于\(5\times 3=15\).

法3:本题目也可以说明倒序相加求和法。

Cnblogs_LT02.bmp\(\fbox{例15+1}\)(宝鸡中学第一次月考第15题)

已知函数\(f(x)=\cfrac{x^2}{1+x^2}\),则\(2f(2)+2f(3)+\cdots+2f(2017)+f(\cfrac{1}{2})+f(\cfrac{1}{3})+\cdots+f(\cfrac{1}{2017})+\cfrac{1}{2^2}f(2)+\cfrac{1}{3^2}f(3)+\cdots+\cfrac{1}{2017^2}f(2017)\)的值为多少?

分析:这类题目往往从研究函数的特殊性质入手,当然研究的切入点就是给定式子的结构,注意到自变量有\(2\)\(\cfrac{1}{2}\),所以先探究\(f(x)+f(\cfrac{1}{x})\),看看它的结果,由\(f(x)+f(\cfrac{1}{x})=1\),可以将所求得式子一部分求值,其他部分变形为\(f(2)+\cfrac{1}{2^2}f(2)\),故接下来探究\(f(x)+\cfrac{1}{x^2}f(x)=1\),故整个题目可解了。

解:由\(f(x)+f(\cfrac{1}{x})=1\)\(f(x)+\cfrac{1}{x^2}f(x)=1\),可将所求式子变形得到:
\(2f(2)+2f(3)+\cdots+2f(2017)+f(\cfrac{1}{2})+f(\cfrac{1}{3})+\cdots+f(\cfrac{1}{2017})+\cfrac{1}{2^2}f(2)+\cfrac{1}{3^2}f(3)+\cdots+\cfrac{1}{2017^2}f(2017)\)
\(=\{[f(2)+f(\cfrac{1}{2})]+[f(3)+f(\cfrac{1}{3})]+\cdots+[f(2017)+f(\cfrac{1}{2017})]\}\\+\{[f(2)+\cfrac{1}{2^2}f(2)]+[f(3)+\cfrac{1}{3^2}f(3)]+\cdots++[f(2017)+\cfrac{1}{2017^2}f(2017)]\}\)
\(=2016+2016=4032\).

992978-20170705195529690-2080906625.jpg
Cnblogs_gkzt01.bmp【2017全国卷1文科第8题高考真题】函数\(f(x)=\cfrac{sin2x}{1-cosx}\)的部分图像大致为()

分析:函数\(f(x)=\cfrac{sin2x}{1-cosx}\)满足\(f(-x)=-f(x)\),故先能排除B,又\(x\rightarrow 0_+\)\(cosx\rightarrow 1\)\(f(x)\rightarrow +\infty\),故排除A;又\(f(\pi)=0\),故排除D,因此应该选C.

Cnblogs_gkzt01.bmp【2017全国卷1文科第9题高考真题】已知函数\(f(x)=lnx+ln(2-x)\),则

A、\(f(x)\)\((0,2)\)单调递增 \(\hspace{4cm}\) B、\(f(x)\)\((0,2)\)单调递减 \(\hspace{2cm}\)
C、\(y=f(x)\)的图像关于直线\(x=1\)对称 \(\hspace{2cm}\) D、\(y=f(x)\)的图像关于点\((1,0)\)对称

分析:由于函数\(f(x)\)是复合函数,定义域要使\(x>0,2-x>0\),即定义域是\((0,2)\),又\(f(x)=ln[x(2-x)]=ln[-(x-1)^2+1]\),则由复合函数的单调性法则可知,在\((0,1)\)上单增,在\((1,2)\)上单减,故排除A,B;

Cnblogs_zsd01.bmp若函数\(y=f(x)\)关于点\((1,0)\)对称,则函数\(f(x)\)必然满足关系:\(f(x)+f(2-x)=0\)

若函数\(y=f(x)\)关于直线\(x=1\)对称,则函数\(f(x)\)必然满足关系:\(f(x)=f(2-x)\)
Cnblogs_kjzl02.bmp课件验证

接下来我们用上述的结论来验证,由于\(f(x)=lnx+ln(2-x)\)\(f(2-x)=ln(2-x)+ln(2-(2-x))=ln(2-x)+lnx\),即满足\(f(x)=f(2-x)\),故函数\(y=f(x)\)的图像关于直线\(x=1\)对称,选C;再来验证D,发现\(f(x)+f(2-x)=2[lnx+ln(2-x)]\neq 0\),D选项不满足。

Cnblogs_gkzt01.bmp【2017全国卷3文科第12题高考真题】已知函数\(f(x)=x^2-2x+a(e^{x-1}+e^{-x+1})\)有唯一零点,则\(a\)=

A、\(-\cfrac{1}{2}\) \(\hspace{2cm}\) B、\(\cfrac{1}{3}\) \(\hspace{2cm}\) C、\(\cfrac{1}{2}\) \(\hspace{2cm}\) D、 \(1\)

法1:【不易想到】由\(f(x)=x^2-2x+a(e^{x-1}+e^{-x+1})\),得到\(f(2-x)=(2-x)^2-2(2-x)+a(e^{2-x-1}+e^{-(2-x)+1})=x^2-2x+a(e^{x-1}+e^{-x+1})\),所以\(f(2-x)=f(x)\),故\(x=1\)是函数\(f(x)\)图像的对称轴。

由题意可知,函数\(f(x)\)有唯一的零点,故只能是\(x=1\),即\(f(1)=1^2-2\times1+a(e^{1-1}+e^{-1+1})=0\),解得\(a=\cfrac{1}{2}\),故选C.

992978-20170708111845878-662541646.png

Cnblogs_byjf02.bmp\(\fbox{法2}\)我们一般这样转化,由函数\(f(x)\)有唯一的零点,得到方程\(x^2-2x=-a(e^{x-1}+e^{-x+1})\)有唯一解,注意到方程的右端,我们可以和对勾函数做以联系

\(x-1=t\),则\(x=t+1\),故原方程就转化为\((t+1)^2-2(t+1)=-a(e^t+e^{-t})\),为了便于做出图像,还需要再代换,令\(e^t=x\),则\(x>0\)\(t=lnx\),这样方程就又转化为\(ln^2x-1=-a(x+\cfrac{1}{x})\),在同一个坐标系中,分别做出函数\(y=ln^2x-1\)\(y=-a(x+\cfrac{1}{x})\)的图像,由图像可知对勾函数前面的系数必须满足\(-a=-\cfrac{1}{2}\),即\(a=\cfrac{1}{2}\),故选C.

Cnblogs_LT02.bmp\(\fbox{例18}\)

已知函数\(f(x)\)是定义在\([-1,1]\)上的奇函数,且\(f(1)=1\),当\(x_1,x_2\in [1,2]\),且\(x_1\neq x_2\)时,有\(\cfrac{f(x_1)+f(x_2)}{x_1+x_2}>0\),若\(f(x)\leq m^2-2am+1\)对所有\(x\in [-1,1]\)\(a\in [-1,1]\)恒成立,则实数\(m\)的取值范围是______。

分析:用\(-x_2\)替换\(x_2\),得到\(\cfrac{f(x_1)+f(-x_2)}{x_1+(-x_2)}>0\)

由于\(f(x)\)是奇函数,得到\(\cfrac{f(x_1)-f(x_2)}{x_1-x_2}>0\)

则可知,函数\(f(x)\)是定义域上的增函数,

\(f(x)_{max}=f(1)=1\)

不等式\(f(x)\leq m^2-2am+1\)对所有\(x\in [-1,1]\)\(a\in [-1,1]\)恒成立,

\(m^2-2am+1\ge 1\)对所有\(a\in [-1,1]\)恒成立,

此时,变换主元得到,即\(2ma-m^2\leq 0\)对任意\(a\in [-1,1]\)恒成立,

\(g(a)=2ma-m^2\),则只需要\(\left\{\begin{array}{l}{g(-1)=-2m-m^2\leq 0}\\{g(1)=2m-m^2\leq 0}\end{array}\right.\)

解得\(m\leq -2\)\(m\ge 2\)\(m=0\)

故所求\(m\)的取值范围为\((-\infty,-2]\cup\{0\}\cup[2,+\infty)\)

转载于:https://www.cnblogs.com/wanghai0666/p/6823556.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值