Java 8 中的 Random 类

在Java8中 java.util.Random 类的一个非常明显的变化就是新增了返回随机数流(random Stream of numbers)的一些方法。

下面的代码是创建一个无穷尽的double类型的数字流,这些数字在0(包括0)和1(不包含1)之间。

Random random = new Random();
DoubleStream doubleStream = random.doubles(); 
复制代码

下面的代码是创建一个无穷尽的int类型的数字流,这些数字在0(包括0)和100(不包括100)之间。

Random random = new Random();
IntStream intStream = random.ints(0, 100); 
复制代码

那么这些无穷尽的数字流用来做什么呢?接下来,我通过一些案例来分析。记住,这些无穷大的数字流只能通过某种方式被截断(limited)。

示例1:创建10个随机的整数流并打印出来:

intStream.limit(10).forEach(System.out::println);
复制代码

示例2:创建100个随机整数:

List<Integer> randomBetween0And99 = intStream
                                       .limit(100)
                                       .boxed()
                                       .collect(Collectors.toList()); 
复制代码

对于高斯伪随机数(gaussian pseudo-random values)来说,random.doubles()方法所创建的流不能等价于高斯伪随机数,然而,如果用java8所提供的功能是非常容易实现的。

Random random = new Random();
DoubleStream gaussianStream = Stream.generate(random::nextGaussian).mapToDouble(e -> e); 
复制代码

这里,我使用了Stream.generate api,并传入Supplier 类的对象作为参数,这个对象是通过调用Random类中的方法 nextGaussian()创建另一个高斯伪随机数。

接下来,我们来对double类型的伪随机数流和double类型的高斯伪随机数流做一个更加有意思的事情,那就是获得两个流的随机数的分配情况。预期的结果是:double类型的伪随机数是均匀的分配的,而double类型的高斯伪随机数应该是正态分布的。

通过下面的代码,我生成了一百万个伪随机数,这是通过java8提供的api实现的:

Random random = new Random();
DoubleStream doubleStream = random.doubles(-1.0, 1.0);
LinkedHashMap<Range, Integer> rangeCountMap = doubleStream.limit(1000000)
        .boxed()
        .map(Ranges::of)
        .collect(Ranges::emptyRangeCountMap, (m, e) -> m.put(e, m.get(e) + 1), Ranges::mergeRangeCountMaps);

rangeCountMap.forEach((k, v) -> System.out.println(k.from() + "\t" + v)); 
复制代码

代码的运行结果如下:

-1      49730
-0.9    49931
-0.8    50057
-0.7    50060
-0.6    49963
-0.5    50159
-0.4    49921
-0.3    49962
-0.2    50231
-0.1    49658
0       50177
0.1     49861
0.2     49947
0.3     50157
0.4     50414
0.5     50006
0.6     50038
0.7     49962
0.8     50071
0.9     49695 
复制代码

为了类比,我们再生成一百万个高斯伪随机数:

Random random = new Random();
DoubleStream gaussianStream = Stream.generate(random::nextGaussian).mapToDouble(e -> e);
LinkedHashMap<Range, Integer> gaussianRangeCountMap =
    gaussianStream
            .filter(e -> (e >= -1.0 && e < 1.0))
            .limit(1000000)
            .boxed()
            .map(Ranges::of)
            .collect(Ranges::emptyRangeCountMap, (m, e) -> m.put(e, m.get(e) + 1), Ranges::mergeRangeCountMaps);

gaussianRangeCountMap.forEach((k, v) -> System.out.println(k.from() + "\t" + v)); 
复制代码

上面代码输出的结果恰恰与我们预期结果相吻合,即:double类型的伪随机数是均匀的分配的,而double类型的高斯伪随机数应该是正态分布的。

用伪随机数所得的结果:

用高斯伪随机数所得的结果:

附:完整代码可点击这里获取


欢迎关注知乎专栏《跟上Java8》,分享优秀的Java8中文指南、教程,同时欢迎投稿高质量的文章。

原文链接: javacodegeeks
翻译: ImportNew.com - 踏雁寻花
译文链接: www.importnew.com/9672.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值