划分数组为两个和相等的子集 Partition Equal Subset Sum

问题:

Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:

  1. Each of the array element will not exceed 100.
  2. The array size will not exceed 200.

Example 1:

Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].

Example 2:

Input: [1, 2, 3, 5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.

解决:

① 多重背包,使用动态规划解决。dp[i][j]表示前i个数,和为j。

1). 判断数组中所有数的和是否为偶数,因为奇数是不可能有解的;

2). dp[i][j] = Math.max(dp[i - 1][j],dp[i - 1][j - nums[i - 1]] + nums[i - 1])

3).如果最后dp[nums.length][sum / 2] = sum / 2,则返回true.

class Solution { //60ms
    public boolean canPartition(int[] nums) {
        if(nums.length == 0) return false;
        int sum = 0;
        for(int n : nums){//求所有数的和
            sum += n;
        }
        if(sum % 2 == 1) return false;//不存在两个和相等的子集
        sum = sum / 2;
        int[][] dp = new int[nums.length + 1][sum + 1];
        for(int i = 0;i <= nums.length;i ++){
            for(int j = 0;j <= sum;j ++){
                if(i == 0) {//表示前0个数,所以价值均为0;
                    dp[i][j] = 0;
                }else if(j < nums[i - 1]){//在装第i-1个数时,先判断剩余容量j是否大于nums[i-1]
                    dp[i][j] = dp[i - 1][j]; //小于表示空间不够,所以维持不变
                }else{//空间够,就通过比较大小来判断是否该放入第i-1个数
                    dp[i][j]=Math.max(dp[i - 1][j],dp[i - 1][j - nums[i - 1]] + nums[i - 1]);
                }
            }
        }
        return dp[nums.length][sum] == sum;
    }
}

② 定义dp[i]表示数字i是否是原数组的任意个子集合之和,初始化dp[0]为true,我们需要遍历原数组中的数字,对于遍历到的每个数字nums[i],我们需要更新我们的dp数组,要更新[nums[i], sum]之间的值,那么对于这个区间中的任意一个数字j,如果dp[j - nums[i]]为true的话,那么dp[j]就一定为true。递推公式如下:dp[j] = dp[j] || dp[j - nums[i]]         (nums[i] <= j <= target)

class Solution { //33ms
    public boolean canPartition(int[] nums) {
        if(nums.length == 0) return false;
        int sum = 0;
        for(int n : nums){//求所有数的和
            sum += n;
        }
        if(sum % 2 == 1) return false;//不存在两个和相等的子集
        sum = sum / 2;
        boolean[] dp = new boolean[sum + 1];
        dp[0] = true;
        for (int i = 0;i < nums.length;i ++){
            for (int j = sum;j >= nums[i];j --){
                dp[j] = dp[j] || dp[j - nums[i]];
            }
        }
        return dp[dp.length - 1];
    }
}

转载于:https://my.oschina.net/liyurong/blog/1601477

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值