
在本文中,我们通过深度学习来处理静态脸部图像的表观年龄估计。我们的卷积神经网络(CNN)使用VGG-16架构,并在ImageNet上预先进行图像分类。另外,由于有明显的年龄注明图像数量有限,我们探索了可用年龄的爬网式互联网面部图像的优势。我们从这个网站上公布的IMDb和维基百科的五百万个名人影像。这是迄今为止最大的年龄预测公共数据集。我们将年龄回归问题作为深度分类问题,随后是softmax预期值细化,并显示出对CNN的直接回归训练的改进。我们提出的方法,深度展望(DEX)的表观年龄,首先检测测试图像中的脸部,然后从裁剪面上的20个网络的集合中提取CNN预测。DEX的CNN在被抓取的图像上进行了分配,然后在提供的图像上进行了明显的年龄注释。DEX不使用显式的面部地标。我们的DEX是ChaLearn LAP 2015挑战赛(第一名),对明显的年龄估计,超过115个注册队伍,显着优于人类参考。
我们的年龄估计模型正在我们的网站howhot.io上使用,它在互联网上传播,并广泛覆盖社会媒体和新闻界(Techcrunch,Hackernews,Reddit#1,Evening Standard,Spiegel)。
从没有面部地标的单一形象深刻期待真实和明显的年龄
国际计算机视觉学报(IJCV),2016年
在本文中,我们提出了一种深度学习解决方案,从单一的面部图像来估计年龄,而不使用面部地标,并引入IMDB-WIKI数据集,这是面向年龄和性别标签的最大的公众数据集。如果真正的年龄估计研究跨越了数十年,则从脸部图像中观察年龄估计或其他人感觉到的年龄的研究是最近的一个尝试。我们通过对ImageNet进行图像分类预先训练的VGG-16架构的卷积神经网络(CNN)来处理这两个任务。我们将年龄估计问题作为深度分类问题,随后是softmax期望值细化。我们的解决方案的关键因素是:从大数据深入学习的模型,强大的面部对齐和年龄回归的预期值。