HYSBZ 1036(树链剖分)

 

题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=28982#problem/E

题意:给定一棵树及树上的点权,要求三种操作:

1)CHANGE u t : 把结点u的权值改为t。

2)QMAX u v: 询问从点u到点v的路径上的节点的最大权值。

3)QSUM u v: 询问从点u到点v的路径上的节点的权值和

分析:树链剖分后就是线段树的单点修改,区间求和与区间求最值。。。

#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 10007
#define inf 0x3f3f3f3f
#define N 100010
#define FILL(a,b) (memset(a,b,sizeof(a)))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
struct edge
{
    int to,next;
    edge(){}
    edge(int to,int next):to(to),next(next){}
}e[N<<1];
int head[N<<1],tot;
int top[N];//top[v]表示v所在的重链的顶端节点
int fa[N];//父亲节点
int dep[N];//深度
int sz[N];//si[v]表示以v为根节点的子树的节点数
int son[N];//重儿子
int p[N];//p[v]表示v与其父亲节点的连边在线段树中的位置
int fp[N];//与p数组相反
int pos;//所有链构成的线段树总长度
int sum[N<<2],mx[N<<2],a[N];
void addedge(int u,int v)
{
    e[tot]=edge(v,head[u]);
    head[u]=tot++;
}
void init()
{
    tot=0;FILL(head,-1);
    pos=0;FILL(son,-1);
}
void dfs(int u,int f,int d)
{
    dep[u]=d;sz[u]=1;fa[u]=f;
    for(int i=head[u];~i;i=e[i].next)
    {
        int v=e[i].to;
        if(v==f)continue;
        dfs(v,u,d+1);
        sz[u]+=sz[v];
        if(son[u]==-1||sz[son[u]]<sz[v])son[u]=v;
    }
}
void getpos(int u,int sp)
{
    top[u]=sp;
    p[u]=++pos;
    fp[pos]=u;
    if(son[u]==-1)return;
    getpos(son[u],sp);
    for(int i=head[u];~i;i=e[i].next)
    {
        int v=e[i].to;
        if(v!=son[u]&&v!=fa[u])
        {
            getpos(v,v);
        }
    }
}
void Pushup(int rt)
{
    int ls=rt<<1,rs=ls|1;
    sum[rt]=sum[ls]+sum[rs];
    mx[rt]=max(mx[ls],mx[rs]);
}
void build(int l,int r,int rt)
{
    if(l==r)
    {
        mx[rt]=sum[rt]=a[fp[l]];
        return;
    }
    int m=(l+r)>>1;
    build(lson);
    build(rson);
    Pushup(rt);
}
void update(int ps,int c,int l,int r,int rt)
{
    if(l==r)
    {
        mx[rt]=sum[rt]=c;
        return;
    }
    int m=(l+r)>>1;
    if(ps<=m)update(ps,c,lson);
    else update(ps,c,rson);
    Pushup(rt);
}
int querysum(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
        return sum[rt];
    int m=(l+r)>>1;
    int res=0;
    if(L<=m)res+=querysum(L,R,lson);
    if(R>m)res+=querysum(L,R,rson);
    return res;
}
int querymax(int L,int R,int l,int r,int rt)
{
    if(L<=l&&r<=R)
        return mx[rt];
    int m=(l+r)>>1;
    int res=-inf;
    if(L<=m)res=max(res,querymax(L,R,lson));
    if(m<R)res=max(res,querymax(L,R,rson));
    return res;
}
int lca(int u,int v,int flag)
{
    int fu=top[u],fv=top[v],res;
    if(flag)res=-inf;
    else res=0;
    while(fu!=fv)
    {
        if(dep[fu]<dep[fv])
        {
            swap(fu,fv);
            swap(u,v);
        }
        if(flag)res=max(res,querymax(p[fu],p[u],1,pos,1));
        else res+=querysum(p[fu],p[u],1,pos,1);
        u=fa[fu];fu=top[u];
    }
    if(dep[u]>dep[v])swap(u,v);
    if(flag)res=max(res,querymax(p[u],p[v],1,pos,1));
    else res+=querysum(p[u],p[v],1,pos,1);
    return res;
}
int main()
{
    int n,t,u,v,w;
    char op[10];
    while(scanf("%d",&n)>0)
    {
        init();
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&u,&v);
            addedge(u,v);
            addedge(v,u);
        }
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        dfs(1,0,0);
        getpos(1,1);
        build(1,pos,1);
        scanf("%d",&t);
        while(t--)
        {
            scanf("%s",op);
            scanf("%d%d",&u,&v);
            if(op[1]=='S')
            {
                printf("%d\n",lca(u,v,0));
            }
            else if(op[1]=='M')
            {
                printf("%d\n",lca(u,v,1));
            }
            else
            {
                update(p[u],v,1,pos,1);
            }
        }
    }
}
View Code

 

转载于:https://www.cnblogs.com/lienus/p/4243050.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值