BZOJ 1571 DP

思路:
预处理出在能力值为i的时候 滑雪一次的最小时间

f[i][j]表示i时间 j的能力值 最多的滑雪次数

我先用vector 把课程按起点push进去

1.

for(int k=0;k<vec[i].size();k++){
        f[i+vec[i][k].l][vec[i][k].a]=max(f[i+vec[i][k].l][vec[i][k].a],f[i][j]);
    }

上课

2.
f[i+1][j]=max(f[i][j],f[i+1][j]);
喝一杯可可汁

3.
f[i+land[j]][j]=max(f[i+land[j]][j],f[i][j]+1);
滑雪

//By SiriusRen
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int t,s,n,land[105],f[20005][105];
struct Course{int m,l,a;}course[10005];
struct Land{int c,d;}jyl;
vector<Course>vec[10005];
int main(){
    memset(land,0x3f,sizeof(land));
    scanf("%d%d%d",&t,&s,&n);
    for(int i=1;i<=s;i++){
        scanf("%d%d%d",&course[i].m,&course[i].l,&course[i].a);
        vec[course[i].m].push_back(course[i]);
    }
    for(int i=1;i<=n;i++){
        scanf("%d%d",&jyl.c,&jyl.d);
        land[jyl.c]=min(land[jyl.c],jyl.d);
    }
    for(int i=1;i<=100;i++)land[i]=min(land[i],land[i-1]);
    memset(f,-1,sizeof(f));
    f[0][1]=0;
    for(int i=0;i<=t;i++){
        for(int j=1;j<=100;j++){
            if(f[i][j]==-1)continue;
            for(int k=0;k<vec[i].size();k++){
                f[i+vec[i][k].l][vec[i][k].a]=max(f[i+vec[i][k].l][vec[i][k].a],f[i][j]);
            }
            f[i+1][j]=max(f[i][j],f[i+1][j]);
            f[i+land[j]][j]=max(f[i+land[j]][j],f[i][j]+1);
        }
    }
    for(int i=1;i<=100;i++)f[t][1]=max(f[t][1],f[t][i]);
    printf("%d\n",f[t][1]);
}

这里写图片描述

转载于:https://www.cnblogs.com/SiriusRen/p/6532224.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值