Problem
Given an array nums and a target value k, find the maximum length of a subarray that sums to k. If there isn't one, return 0 instead.
Note
The sum of the entire nums array is guaranteed to fit within the 32-bit signed integer range.
Examples
Example 1:
Given nums = [1, -1, 5, -2, 3], k = 3,
return 4. (because the subarray [1, -1, 5, -2] sums to 3 and is the longest)
Example 2:
Given nums = [-2, -1, 2, 1], k = 1,
return 2. (because the subarray [-1, 2] sums to 1 and is the longest)
Follow Up:
Can you do it in O(n) time?
Solution
class Solution {
public int maxSubArrayLen(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
int max = 0, sum = 0;
//this is the crucial step... if the subarray starts from index 0,
//we need to count an extra 1 as it is one less than the actual length
map.put(0, -1);
for (int i = 0; i < nums.length; i++) {
sum += nums[i];
if (map.containsKey(sum-k)) {
//sum-k means... the preSum satisfies: sum-preSum=k
//so lets get 'i-preSum_index' and compare with existing max length
max = Math.max(max, i-map.get(sum-k));
}
//if map already has current sum, we would definitely use the earlier index
//to get the larger length, right?
if (!map.containsKey(sum)) map.put(sum, i);
}
return max;
}
}