Filter
对于字段的过滤操作只需要map即可,不会产生reduce。
/*
* 字段依次为:编号 姓名 学科 分数。
*
* 获取:姓名为zyl的学生。结果只取字段:姓名 学科 分数
*
* input:
*1 zyl English 80
*2 zyl Math 50
*3 lyy English 90
*4 lyy Chinese 80
*
*output:
*zyl English 80
*zyl Math 50
* */
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class Filter {
//只写了Mapper,没有Reduce
public static class TokenizerMapper extends Mapper<Object, Text, Text, Text> {
private String[] FilterStrings = { "zyl" };
private List<String> FilterList = Arrays.asList(FilterStrings);
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer StringTokenLine = new StringTokenizer(value.toString(), " ");
while (StringTokenLine.hasMoreTokens()) {
String No = StringTokenLine.nextToken();
String Name = StringTokenLine.nextToken();
if (FilterList.contains(Name)) {
String Subject = StringTokenLine.nextToken();
String Score = StringTokenLine.nextToken();
context.write(new Text(Name + " " + Subject + " " + Score), new Text(""));
} else
continue;
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String HADOOP_HOME = System.getenv("HADOOP_HOME");
String HADOOP_CONF_DIR = HADOOP_HOME + "/etc/hadoop";
conf.addResource(new Path(HADOOP_CONF_DIR + "/core-site.xml"));
conf.addResource(new Path(HADOOP_CONF_DIR + "/hdfs-site.xml"));
conf.addResource(new Path(HADOOP_CONF_DIR + "/yarn-site.xml"));
conf.set("mapreduce.job.ubertask.enable", "true");
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "Filter");
job.setJarByClass(Filter.class);
job.setMapperClass(TokenizerMapper.class);
//这里不设置reduce class
//job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
也可以通过_job.setNumReduceTasks(0);_来设置reduce的数目为0,也能起到同样的效果。
当reduce数目为0时,直接使用NewDirectOutputCollector类,调用outputFormat.getRecordWriter然后进行输出。