BestCoder Round #91 1002 Lotus and Horticulture

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6012

题意:

这几天Lotus对培养盆栽很感兴趣,于是她想搭建一个温室来满足她的研究欲望。
Lotus将所有的nn株盆栽都放在新建的温室里,所以所有盆栽都处于完全相同的环境中。 每一株盆栽都有一个最佳生长温度区间[l,r][l,r],在这个范围的温度下生长会生长得最好,但是不一定会提供最佳的研究价值(Lotus认为研究发育不良的盆栽也是很有研究价值的)。 Lotus进行了若干次试验,发现若第ii株盆栽的生长温度适宜,可以提供a_iai​​的研究价值;若生长温度超过了适宜温度的上限,能提供b_ibi​​的研究价值;若生长温度低于适宜温度的下限,则能提供c_ici​​的研究价值。 现在通过试验,Lotus已经得知了每一株盆栽的适宜生长温度范围,也知道了它们的aa、bb、cc的值。你需要根据这些信息,给温室选定一个温度(这个温度可以是任意实数),使得Lotus能获得的研究价值最大。

分析:

刚开始这么多温度,很自然的想到二分,但是,这个温度又可以是实数,不是很好处理。

其实可以发现,对于一个区间,只要处理好区间左边0.5,右边0.5,区间端点就可以概括所有情况了。

于是,由于实数温度不好处理,可以将区间*2,左边0.5,就是-1.

然后温度是很大的数据的,从最低温开始查是不合理的,于是将温度离散化。

从最低温开始,价值就是c之和。每对于一个植物的温度,端点值加a-c,右边的值减 b-a,

那么某一个温度的价值和,就是维护的数组的前缀和。

#include <bits/stdc++.h>
#define ll long long
using namespace std;

int T,n;
int L[50005],R[50005];
ll a[50005],b[50005],c[50005];
int cnt,t[300010];
ll sum[300010];

int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        cnt = 0;

        memset(sum,0,sizeof(sum));

        for(int i=1; i<=n; i++) {
            scanf("%d%d%I64d%I64d%I64d",&L[i],&R[i],&a[i],&b[i],&c[i]);
            L[i] *=2;
            R[i] *=2;
        }

        for(int i=1; i<=n; i++)
        {
            t[++cnt]=L[i]-1;
            t[++cnt]=L[i];
            t[++cnt]=L[i]+1;
            t[++cnt]=R[i]-1;
            t[++cnt]=R[i];
            t[++cnt]=R[i]+1;
        }

        sort(t+1,t+cnt+1);

        cnt = unique(t+1,t+cnt+1)-t-1;  //待查的温度个数

        //温度离散化
        for(int i=1; i<=n; i++)
        {
            L[i] = lower_bound(t+1,t+cnt+1,L[i]) - t;
            R[i] = lower_bound(t+1,t+cnt+1,R[i]) - t;
        }

        for(int i=1; i<=n; i++)
        {
            sum[1] +=c[i];  //最低温
            sum[L[i]] +=a[i]-c[i];
            sum[R[i]+1] +=b[i]-a[i];
        }

        for(int i=1; i<=cnt+2; i++)
            sum[i] += sum[i-1];

        ll ans = 0;
        for(int i=1; i<=cnt+2; i++)
            ans = max(ans,sum[i]);
        cout<<ans<<endl;

    }

    return 0;
}

 

转载于:https://www.cnblogs.com/TreeDream/p/6339993.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值