二次函数

一、二次函数的基础知识

  • 1、参见各种高三复习的资料,暂略。

  • 2、补充二次函数\(y=ax^2+bx+c(a\neq 0)\)为偶函数,则\(b=0\)

二次函数\(y=ax^2+bx+c(a\neq 0)\)的值域若为\([0,+\infty)\),则\(a>0\)\(\Delta=0\);若值域为\((-\infty,0]\),则\(a<0\)\(\Delta=0\)

二、二次函数在高中怎么突然变得难学了?

992978-20170802114451255-2065863929.png

  • 对二次函数的图像和性质的学习研究更细致了,比如二次函数\(f(x)=ax^2+bx+c(a\neq 0)\)

一般来说初中研究的二次函数的定义域是默认的\(R\),而高中研究定义域往往会变成\(R\)的一个子集,比如\(x\in [3,7]\),或\(x\in[0,+\infty)\)

  • 定义域变化,往往会引起函数的性质的变化,好多学生恰恰没有意识到这一点。

以配图为例,红色的是函数\(y=2x^2-x-3,x\in R\)的图像,这时候函数的性质比较简单,比如有对称性,对称轴是\(x=\cfrac{1}{4}\),没有单调性,此时只有最小值,

蓝色的是函数\(y=x^2-5x+2,x\in [1,5]\)的图像,此时定义域变成\(R\)的一个子集,这时候函数的性质就变得复杂了,此时没有了对称性,也没有单调性,但是有了最小值也有最大值。如果定义域变成\(x\in [3,5]\),那么此时又有了单调性,且有最大值和最小值。

  • 有些问题如果借助二次函数求解会变得简单, 比如利用图像确定二次方程的根的分布,如下例题。

992978-20170719093450505-234958457.png
Cnblogs_LT02.bmp\(\fbox{例1}\)如果方程\(x^2+(m-1)x+m^2-2=0\)的两个实根一个小于\(-1\),另一个大于\(1\),那么实数\(m\)的取值范围是\((\qquad)\)

法1:如果你想到用求根公式表达出\(x_1<-1\)\(x_2>1\),这样的思维往往也没有错,但是思维的层次就有点低了,因为仅仅想到用数来表达,而没有想到借助形来简化运算,况且转化后得到的是无理不等式,求解过程本身就很复杂。

法2:我们一般利用其对应函数的图像来控制方程根的分布,所以设\(f(x)=x^2+(m-1)x+m^2-2\),做出适合题意的函数\(f(x)\)的大致图像,有图像可知,此时只须满足条件:\(\begin{cases} f(-1)<0 \\ f(1)<0 \end{cases}\)即可,下来解不等式就可以了。即求解\(\begin{cases}1-(m-1)+m^2-2<0 \\ 1+(m-1)+m^2-2<0 \end{cases}\)

这样的二次不等式的求解应该比法1简单。

  • 转化为二次函数求解,比如求函数\(f(x)=x+\sqrt{3x-2}\)的值域;

分析:令\(\sqrt{3x-2}=t(t\ge 0)\),则\(x=\cfrac{t^2+2}{3}\),那么原函数就变为\(f(x)=x+\sqrt{3x-2}=\cfrac{t^2+2}{3}+t=g(t)\),这样求原函数\(f(x)\)的值域问题,就转化为了新的二次函数\(g(t)\)的值域问题了,

三、为什么说掌握二次函数是高考成败的一个关键

1、90%的解不等式就是二次不等式,借助二次函数来完成,比如\(x^2+3x+2>0\)

2、字母系数的二次不等式即含参不等式,比如解关于\(x\)的不等式\(x^2+(a^2+a)x+a^3>0\)

3、涉及到分类讨论思想,数形结合思想,转化划归思想 比如定轴动区间,动轴定区间问题

Cnblogs_LT02.bmp\(\fbox{例2}\)已知二次函数\(f(x)=ax^2+bx(a,b\in R,a\neq 0)\),满足条件\(f(x-1)=f(3-x)\),且方程\(f(x)=2x\)有两个相等实数根,

(1)求\(f(x)\)的解析式;

(2)求\(f(x)\)\([0,t]\)上的最大值。

解析:(1)属于求解析式问题。由\(f(x-1)=f(3-x)\)可知,函数\(f(x)\)的对称轴为\(-\dfrac{b}{2a}=1\),又方程\(ax^2+bx-2x=0\)有两个相等实数根,故\(\Delta=(b-2)^2=0\),联立两式解得\(a=-1,b=2\),则函数\(f(x)=-x^2+2x\);

(2)到此,问题转化为二次函数在动区间上的最值问题了,往往需要数形结合解决题目。\(f(x)=-(x-1)^2+1\),对称轴是直线\(x=1\),自变量\(x\in [0,t]\)

\(0\leq t\leq 1\)时,\(f(x)\)在区间\([0,t]\)上单调递增,故\(f(x)_{max}=f(t)=-t^2+2t\)

\(t>1\)时,\(f(x)\)在区间\([0,1]\)上单调递增,在区间\([1,t]\)上单调递减,故\(f(x)_{max}=f(1)=1\)

\(f(x)_{max}=\begin{cases}-t^2+2t,&0\leq t\leq 1\\1,&t>1 \end{cases}\).

4、用导数解决单调性问题,往往就成了解二次不等式。

Cnblogs_LT02.bmp\(\fbox{例3}\)已知函数\(f(x)=\cfrac{ax+b}{x}\cdot e^x,a、b\in R,a>0\)

(1).若函数\(f(x)\)\(x=-1\)处取到极值\(\cfrac{1}{e}\),试求函数\(f(x)\)的解析式和单调区间;

提示:\(f'(-1)=0,f(-1)=\cfrac{1}{e}\),分别求得\(a-2b=0\)\(a-b=1\),联立求得\(a=2,b=1\);则\(f(x)=\cfrac{2x+1}{x}\cdot e^x\)

求解单调区间,实质就是解不等式\(f'(x)=\cfrac{e^x(x+1)(2x-1)}{x^2}>0\)\(f'(x)=\cfrac{e^x(x+1)(2x-1)}{x^2}<0\),此时可以通过穿根法解分式不等式。\((-\infty,-1)和(\cfrac{1}{2},+\infty)\)单调递增;\((-1,0)和(0,\cfrac{1}{2})\)单调递减;

Cnblogs_LT02.bmp\(\fbox{例4}\)已知函数\(f(x)=x^2+2mlnx-(m+4)x+lnm+2\)

(Ⅱ)当\(m>0\)时,试讨论函数\(f(x)\)的单调性;

解析:(Ⅱ)\(f'(x)=2x+\cfrac{2m}{x}-(m+4)=\cfrac{2x^2-(m+4)x+2m}{x}=\cfrac{(x-2)(2x-m)}{x}\)

\(f'(x)=0\),得到\(x=2\)\(x=\cfrac{m}{2}>0\),只需要借助分子函数的图像,即可判断导函数的正负,

\(0<\cfrac{m}{2}<2\)时,即\(0<m<4\)时,

\(x\in (0,\cfrac{m}{2})\)时,\(f'(x)>0\)\(f(x)\)单调递增,

\(x\in (\cfrac{m}{2},2)\)时,\(f'(x)<0\)\(f(x)\)单调递减,

\(x\in (2,+\infty)\)时,\(f'(x)>0\)\(f(x)\)单调递增,

\(\cfrac{m}{2}=2\)时,即\(m=4\)时,此时\(f'(x)\ge 0\)恒成立,当且仅当\(x=2\)时取得等号,故\(f(x)\)\((0,+\infty)\)上单调递增,

\(\cfrac{m}{2}>2\)时,即\(m>4\)时, \(x\in (0,2)\)时,\(f'(x)>0\)\(f(x)\)单调递增,

\(x\in (2,\cfrac{m}{2})\)时,\(f'(x)<0\)\(f(x)\)单调递减,

\(x\in (\cfrac{m}{2},+\infty)\)时,\(f'(x)>0\)\(f(x)\)单调递增,

综上所述,当\(0<m<4\)时, \(x\in (0,\cfrac{m}{2})\)时,\(f(x)\)单调递增, \(x\in (\cfrac{m}{2},2)\)时,\(f(x)\)单调递减,\(x\in (2,+\infty)\)时,\(f(x)\)单调递增,

\(m=4\)时,\(f(x)\)\((0,+\infty)\)上单调递增,

\(m>4\)时, \(x\in (0,2)\)时,\(f(x)\)单调递增, \(x\in (2,\cfrac{m}{2})\)时,\(f(x)\)单调递减, \(x\in (\cfrac{m}{2},+\infty)\)时,\(f(x)\)单调递增。

Cnblogs_LT02.bmp\(\fbox{例5}\)【二次函数恒成立模型】

  • 已知[仿二次]函数\(f(x)=ax^2+bx+c\ge 0\)\(R\)上恒成立的充要条件是\(\left\{\begin{array}{l}{a>0}\\{\Delta\leq 0}\end{array}\right.\)\(\left\{\begin{array}{l}{a=b=0}\\{c\ge 0}\end{array}\right.\)

  • 已知二次函数\(f(x)=ax^2+bx+c\ge 0(a\neq 0)\)\(R\)上恒成立的充要条件是\(\left\{\begin{array}{l}{a>0}\\{\Delta\leq 0}\end{array}\right.\)

  • 已知二次函数\(f(x)=ax^2+bx+c\leq 0(a\neq 0)\)\(R\)上恒成立的充要条件是\(\left\{\begin{array}{l}{a<0}\\{\Delta \leq 0}\end{array}\right.\)

  • 已知二次函数\(f(x)=ax^2+bx+c\ge 0(a> 0)\)\([m,n]\)上恒成立的充要条件的写法有两种形式:

其一是\(\left\{\begin{array}{l}{-\cfrac{b}{2a}\leq m}\\{f(m)\ge 0}\end{array}\right.\)\(\left\{\begin{array}{l}{-\cfrac{b}{2a}\ge n}\\{f(n)\ge 0}\end{array}\right.\)\(\left\{\begin{array}{l}{m<-\cfrac{b}{2a}<n}\\{f(-\cfrac{b}{2a})\ge 0}\end{array}\right.\)

其二是\(\Delta \leq 0\)\(\left\{\begin{array}{l}{\Delta>0}\\{-\cfrac{b}{2a}\leq m}\\{f(m)\ge 0}\end{array}\right.\)\(\left\{\begin{array}{l}{\Delta>0}\\{-\cfrac{b}{2a}\ge n}\\{f(n)\ge 0}\end{array}\right.\)

  • 已知二次函数\(f(x)=ax^2+bx+c\leq 0(a> 0)\)\([m,n]\)上恒成立的充要条件是\(\left\{\begin{array}{l}{f(m)\leq 0}\\{f(n)\leq 0}\end{array}\right.\)

Cnblogs_LT02.bmp\(\fbox{例10}\)【2019届高三理科数学二次函数和幂函数课时作业第6题】

已知函数\(f(x)=x^2+2(a-2)x+4\),如果对\(x\in [-3,1]\)\(f(x)>0\)恒成立,则实数\(a\)的取值范围是_______。

【法1:二次函数在定区间上恒成立,分类标准为\(\Delta\)+对称轴】

\(f(x)=x^2+2(a-2)x+4\),对称轴为\(2-a\)\(\Delta=4(a-2)^2-16=4(a^2-4a)\)

由对\(x\in [-3,1]\)\(f(x)>0\)恒成立,可以分为以下几种,

\(\Delta <0\)或②\(\left\{\begin{array}{l}{\Delta\ge 0}\\{2-a\leq -3}\\{f(-3)>0}\end{array}\right.\)或③\(\left\{\begin{array}{l}{\Delta\ge 0}\\{2-a\ge 1}\\{f(1)>0}\end{array}\right.\)

解①得到,\(0<a<4\)

解②得到,\(a\in \varnothing\)

解③得到,\(-\cfrac{1}{2}<a\leq 0\)

综上所述,\(a\in(-\cfrac{1}{2},4)\)

【法2:二次函数在定区间上恒成立,分类标准仅仅为对称轴】

\(f(x)=x^2+2(a-2)x+4\),对称轴为\(2-a\)

由对\(x\in [-3,1]\)\(f(x)>0\)恒成立,只需要\(f(x)_{min}>0\)即可;

针对对称轴和给定区间的位置关系可以分为以下几种,

\(\left\{\begin{array}{l}{2-a\leq -3}\\{f(-3)>0}\end{array}\right.\)或②\(\left\{\begin{array}{l}{-3<2-a<1}\\{f(2-a)>0}\end{array}\right.\)或③\(\left\{\begin{array}{l}{2-a\ge 1}\\{f(1)>0}\end{array}\right.\)

解①得到,\(a\in \varnothing\)

解②得到,\(1<a<4\)

解③得到,\(-\cfrac{1}{2}<a\leq 1\)

综上所述,\(a\in(-\cfrac{1}{2},4)\)

【法3:分离参数法+分类讨论】

转化为\(2xa>-x^2+4x-4\)在区间\(x\in [-3,1]\)上恒成立,

①当\(x=0\)时,\(a\in R\)都成立;

②当\(0<x\leq 1\)时,\(a>\cfrac{-x^2+4x-4}{2x}=-\cfrac{x}{2}-\cfrac{2}{x}+2=g(x)\)恒成立,

\(a>g(x)_{max}\),用对勾函数可以求得当\(0<x\leq 1\)时的\(g(x)_{max}=g(1)=-\cfrac{1}{2}\)

\(a>-\cfrac{1}{2}\)

③当\(-3\leq x<0\)时,\(a<\cfrac{-x^2+4x-4}{2x}=-\cfrac{x}{2}-\cfrac{2}{x}+2=g(x)\)恒成立,

\(a<g(x)_{min}\),用对勾函数可以求得当\(-3\leq x<0\)时的\(g(x)_{min}=g(-2)=4\)

\(a<4\)

综上所述,以上情况取交集,得到\(a\in(-\cfrac{1}{2},4)\)

解后反思:

①当针对参数分类讨论时,最后的结果必须求并集;当针对自变量分类讨论时,最后的结果必须求交集;

②整理出方法3只是为了说明这种方法也是可行的,但是碰到这类题目我们一般不采用方法3;

其中本题目求解中省略了求函数\(g(x)\)的两个最值的大量的篇幅。如果补充就等于我们一次做了2-3个题目,

从效率上说很不划算。

Cnblogs_LT02.bmp\(\fbox{例6}\)【定轴动区间问题】

转载于:https://www.cnblogs.com/wanghai0666/p/7272367.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值