分治法-大整数乘法和Strassen矩阵乘法

4.5.1 大整数乘法

对于100位甚至更多位的十进制之间的乘法运算还是比较复杂的。我们使用经典的笔算算法来对两个n位整数相乘,第一个数中的n个数字都要被第二个数中的n个数字相乘,这样就需要做n2次相乘,而使用分治技术,我们就能设计出乘法次数少于n2次的算法。

先来看下这个简单公式:

image,则

                                                    image

我们实际上要处理的就是中间的image这一部分,就是将这两次乘法转为一次乘法,具体实现可由下面这个公式得到:

image

我们令image

所以image,原式为:

image

额,这个算法还是有点复杂,代码不知道该怎么写。

4.5.2 Strassen矩阵乘法

V.Strassen在1969年发表了这个算法,它的成功依赖于这个发现:计算两个2阶方阵A和B的积C只需要进行7次乘法运算,而不是蛮力算法所需要的8次。公式参照如下:

image

其中,

image

因此,对于两个2阶方阵相乘时,Strassen算法执行了7次乘法和18次加减法,而蛮力法需要执行8次乘法和4次加法。虽然只是减少了一次乘法,但当矩阵的阶趋于无穷大时,算法卓越的效率就渐渐表现出来了。

代码实现这个算法对我来说感觉还是有点复杂:-),毕竟考虑的因素有很多,因为进行乘法运算的矩阵并不都是2n阶的,而且矩阵之间是无法进行乘法运算的,总之,思路感觉有点多啊。以下代码是我排除了各种不定因素,且进行乘法运算的矩阵都是2n阶的方阵(好像是有点low哦,不过不管啦)。

代码实现:





算法分析:

上面的代码我用了两个23阶的矩阵测试过,结果是正确的,其它阶数的矩阵我没测试,估计会有很多错误。

估计一下算法的渐进效率,M(n)表示Strassen算法在计算两个n阶方阵时执行的乘法次数(n为2的乘方),它满足下面的递推关系式:

当n>1时,M(n)=7M(n/2),M(1)=1

因为n=2k

image

因为k=log2n,

image

它比蛮力法需要的n3次乘法运算要少。

转载于:https://www.cnblogs.com/fei-er-blog/p/4821818.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值