广度优先搜索使用队列模型
1、把根节点放到队列的末尾。
2、每次从队列的头部取出一个元素,查看这个元素所有的下一级元素,把它们放到队列的末尾。
并把这个元素记为它下一级元素的前驱。
3、找到所要找的元素时结束程序。
4、如果遍历整个树还没有找到,结束程序。
广度优先搜索使用栈模型
1、把根节点压入栈中。
2、每次从栈中弹出一个元素,搜索所有在它下一级的元素,把这些元素压入栈中。
并把这个元素记为它下一级元素的前驱。
3、找到所要找的元素时结束程序。
4、如果遍历整个树还没有找到,结束程序。
使用栈模型更容易理解,广度优先搜索,不妨思考一下,栈的运行模式.
代码模型
迷宫模型,寻找到达迷宫的最少步数;此代码使用队列模型
广度优先搜索
public class Test {
public static void main(String[] args) {
Test t = new Test();
t.bfs();
}
private class Node {
int x;
int y;
int step;
public Node(int x, int y, int step) {
this.x = x;
this.y = y;
this.step = step;
}
@Override
public String toString() {
return "Node [x=" + x + ", y=" + y + ", step=" + step + "]";
}
}
int startX = 0;
int startY = 0;
int[][] plat = new int[][] { { 0, 0, 1, 0, 0 }, { 0, 0, 1, 0, 1 },
{ 0, 0, 1, 0, 0 }, { 0, 0, 0, 0, 1 } };
int p = 2;
int q = 3;
int[][] next = { { 0, 1 }, { 1, 0 }, { 0, -1 }, { -1, 0 } };
int[][] book = new int[4][5];
Queue<Node> queue = new LinkedList<Node>();
public int bfs() {
queue.add(new Node(0, 0, 0));
while (!queue.isEmpty()) {
Node newNode = queue.poll();
book[newNode.x][newNode.y] = 1;
System.out.println(newNode);
out(book);
for (int k = 0; k < 4; k++) {
int x = newNode.x + next[k][0];
int y = newNode.y + next[k][1];
if (x == p && y == q) {
System.out.println("至少需要" + (newNode.step + 1));
return newNode.step + 1;
}
if (x >= 0 && x <= plat.length - 1 && y >= 0 && y <= plat[0].length - 1 && plat[x][y] == 0
&& book[x][y] == 0) {
queue.add(new Node(x, y, newNode.step + 1));
}
}
}
return -1;
}
public void out(int[][] a) {
for (int[] is : a) {
for (int i : is) {
System.out.print(i + " ");
}
System.out.println();
}
System.out.println();
}
}
快速理解
队列出队进队.进入[x=0, y=1] step=1,这是从0,0到达0,1的最小步数
同样到达 [x=1, y=1], step=2
达到目标点[x=2, y=3], step=7
代码输出图
Node [x=0, y=0, step=0]
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Node [x=0, y=1, step=1]
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Node [x=1, y=0, step=1]
1 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Node [x=1, y=1, step=2]
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
Node [x=1, y=1, step=2]
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
Node [x=2, y=1, step=3]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
0 0 0 0 0
Node [x=2, y=1, step=3]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
0 0 0 0 0
Node [x=3, y=1, step=4]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0
Node [x=3, y=1, step=4]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0
Node [x=3, y=2, step=5]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
0 1 1 0 0
Node [x=3, y=0, step=5]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
1 1 1 0 0
Node [x=3, y=2, step=5]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
1 1 1 0 0
Node [x=3, y=0, step=5]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
1 1 1 0 0
Node [x=3, y=3, step=6]
1 1 0 0 0
1 1 0 0 0
0 1 0 0 0
1 1 1 1 0
至少需要7