Mahout 0.12.2 Install

Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括被称为Taste的分布式协同过滤的实现、分类、聚类等。
Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。

http://www.ha97.com/5803.html


1.下载解压
[root@sht-sgmhadoopnn-01 hadoop]# wget http://apache.fayea.com/mahout/0.12.2/apache-mahout-distribution-0.12.2.tar.gz
[root@sht-sgmhadoopnn-01 hadoop]# tar -xzvf apache-mahout-distribution-0.12.2.tar.gz
[root@sht-sgmhadoopnn-01 hadoop]# ln -s /hadoop/apache-mahout-distribution-0.12.2  mahout

2.配置环境变量
[root@sht-sgmhadoopnn-01 hadoop]# vi /etc/profile
........
........
export MAHOUT_HOME=/hadoop/mahout
export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf

export PATH=$MAHOUT_HOME/bin:$PATH
[root@sht-sgmhadoopnn-01 hadoop]# source /etc/profile

3.运行mahout 测试
[root@sht-sgmhadoopnn-01 ~]# mahout
MAHOUT_LOCAL is not set; adding HADOOP_CONF_DIR to classpath.
Running on hadoop, using /hadoop/hadoop-2.7.2/bin/hadoop and HADOOP_CONF_DIR=/hadoop/hadoop-2.7.2/etc/hadoop
MAHOUT-JOB: /hadoop/mahout/mahout-examples-0.12.2-job.jar
An example program must be given as the first argument.
Valid program names are:
  arff.vector: : Generate Vectors from an ARFF file or directory
  baumwelch: : Baum-Welch algorithm for unsupervised HMM training
  canopy: : Canopy clustering
  cat: : Print a file or resource as the logistic regression models would see it
  cleansvd: : Cleanup and verification of SVD output
  clusterdump: : Dump cluster output to text
  clusterpp: : Groups Clustering Output In Clusters
  cmdump: : Dump confusion matrix in HTML or text formats
  cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
  cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
  describe: : Describe the fields and target variable in a data set
  evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
  fkmeans: : Fuzzy K-means clustering
  hmmpredict: : Generate random sequence of observations by given HMM
  itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
  kmeans: : K-means clustering
  lucene.vector: : Generate Vectors from a Lucene index
  matrixdump: : Dump matrix in CSV format
  matrixmult: : Take the product of two matrices
  parallelALS: : ALS-WR factorization of a rating matrix
  qualcluster: : Runs clustering experiments and summarizes results in a CSV
  recommendfactorized: : Compute recommendations using the factorization of a rating matrix
  recommenditembased: : Compute recommendations using item-based collaborative filtering
  regexconverter: : Convert text files on a per line basis based on regular expressions
  resplit: : Splits a set of SequenceFiles into a number of equal splits
  rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
  rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
  runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
  runlogistic: : Run a logistic regression model against CSV data
  seq2encoded: : Encoded Sparse Vector generation from Text sequence files
  seq2sparse: : Sparse Vector generation from Text sequence files
  seqdirectory: : Generate sequence files (of Text) from a directory
  seqdumper: : Generic Sequence File dumper
  seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
  seqwiki: : Wikipedia xml dump to sequence file
  spectralkmeans: : Spectral k-means clustering
  split: : Split Input data into test and train sets
  splitDataset: : split a rating dataset into training and probe parts
  ssvd: : Stochastic SVD
  streamingkmeans: : Streaming k-means clustering
  svd: : Lanczos Singular Value Decomposition
  testnb: : Test the Vector-based Bayes classifier
  trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
  trainlogistic: : Train a logistic regression using stochastic gradient descent
  trainnb: : Train the Vector-based Bayes classifier
  transpose: : Take the transpose of a matrix
  validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
  vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
  vectordump: : Dump vectors from a sequence file to text
  viterbi: : Viterbi decoding of hidden states from given output states sequence
[root@sht-sgmhadoopnn-01 ~]#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值