数学归纳法

本文详细介绍了数学归纳法的定义、注意事项、典型应用场景及证明步骤。通过多个实例,如证明代数恒等式、求解数列通项公式、解决整除问题和几何问题,展示了数学归纳法在证明与自然数相关的命题中的重要性。同时,强调了从归纳奠基到归纳递推的两个关键步骤,并探讨了数学归纳法在证明不等式和分析项数变化中的挑战和技巧。
摘要由CSDN通过智能技术生成

一、定义

一般地,证明一个与正整数\(n\)有关的命题,可按下列步骤进行:

(1)归纳奠基:证明当\(n\)取第一个值\(n_0 (n_0∈N^*)\)时命题成立;

(2)归纳递推:假设当\(n=k(k≥n_0,k∈N^*)\)时命题成立,推出当\(n=k+1\)时命题也成立。

只要完成这两个步骤,就可以断定命题对从\(n_0\)开始的所有正整数\(n\)都成立.上述证明方法叫做数学归纳法。

二、注意事项

  • 凡是与自然数有关的命题,或探索性问题都可以使用数学归纳法来证明。

  • 两个步骤缺一不可,第一步是归纳奠基,第二步是归纳递推。

  • 第一步的初值不一定是\(n_0=1\),还有可能是\(n_0=2\)\(n_0=3\),比如涉及到多边形的问题时,其初值往往为\(n_0=3\)

  • 第二步在证明\(n=k+1\)时命题成立的时候,必须使用\(n=k\)时的归纳假设,否则绕过归纳假设得出的结论就是不可靠的,是错误的。

  • 数学归纳法的难点其一,就是从\(n=k\)\(n=k+1\)时的项数的变化情况,大多情况下,增加项数为\(1\)项,但不是所有题目都增加的项数为\(1\)项,当\(k\)在指数位置时,增加的项数往往不止一项。

  • 在证明\(n=k+1(k∈N^*,k≥n_0)\)时命题成立的常用技巧:

①分析\(n=k+1\)时命题与$ n=k$ 时命题形式的差别,确定证明目标。

②证明恒等式时常用乘法公式、因式分解、添拆项配方、通分等等变形技巧,证明不等式时常用分析法、综合法、放缩法、做差法等。

③可能用到公式:\((a+b)^3=a^3+3a^2b+3ab^2+b^3\)\(a^3+b^3=(a+b)(a^2-ab+b^2)\)

三、关联素材

  • A、能证明代数恒等式

  • B、证明不等式

  • C、证明整除问题

  • D、证明几何问题

  • E、用于求数列的通项公式【归纳\(\Rightarrow\)猜想\(\Rightarrow\)证明】

四、典例剖析

例1【证明代数恒等式】

如已知\(n\in N^{*}\),证明\(1\cdot n+2\cdot (n-1)+3\cdot (n-2)+\cdots+(n-1)\cdot 2+n\cdot 1= \cfrac{1}{6}n(n+1)(n+2)\)

证明:【数学归纳法】

\(1^{\circ}\)\(n=1\)时,左=\(1\),右=\(\cfrac{1\times 2\times 3}{6}=1\),等式成立。

\(2^{\circ}\) 假设\(n=k(k\ge1,k\in N^*)\)等式成立,

则$ 1\cdot k+2\cdot (k-1)+3\cdot (k-2)+\cdots+(k-1)\cdot 2+k\cdot 1= \cfrac{1}{6}k(k+1)(k+2)$

\(n=k+1\)时,

$1\cdot (k+1)+2\cdot [(k+1)-1]+3\cdot [(k+1)-2]+\cdots+[(k+1)-1]\cdot 2+(k+1)\cdot 1 $

\(=1\cdot k+2\cdot (k-1)+3\cdot (k-2)+\cdots+(k-1)\cdot 2+k\cdot 1+[1+2+3+\cdots+k+(k+1)]\)

\(=\cfrac{1}{6}k(k+1)(k+2)+\cfrac{(1+k+1)(k+1)}{2}\)

\(=\cfrac{1}{6}(k+1)(k+2)(k+3)\)

\(=\cfrac{1}{6}(k+1)[(k+1)+1][(k+1)+2]\)

\(n=k+1\)时,等式成立,

综上可知,对\(\forall n\in N^*\)\(1\cdot n+2\cdot (n-1)+3\cdot (n-2)+\cdots+(n-1)\cdot 2+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值