题目:
Given n points on a 2D plane, find if there is such a line parallel to y-axis that reflect the given points. Example 1: Given points = [[1,1],[-1,1]], return true. Example 2: Given points = [[1,1],[-1,-1]], return false. Follow up: Could you do better than O(n2)? Hint: Find the smallest and largest x-value for all points. If there is a line then it should be at y = (minX + maxX) / 2. For each point, make sure that it has a reflected point in the opposite side.
解法:
这道题主要是判断N个点是否沿某条线对称,可以从提示看出来所有的点应该要满足 2Y = minX + maxX;所以先把所有的点扫一遍存下来,找到minX和minX. 然后再扫一遍,判定是否点都是延直线对称的。 时间复杂度O(n),空间复杂度O(n).
代码:
public class Solution {
public boolean isReflected(int[][] points) {
int min = Integer.MAX_VALUE, max = Integer.MIN_VALUE;
Set<String> set = new HashSet<String>();
for (int[] p : points) {
set.add(p[0] + "," + p[1]);
min = Math.min(min, p[0]);
max = Math.max(max, p[0]);
}
int sum = min + max;
for (int[] p : points) {
if (!set.contains((sum - p[0]) + "," + p[1])) {
return false;
}
}
return true;
}
}
本文介绍了一种高效算法,用于判断二维平面上的点集是否关于垂直于y轴的直线对称。通过寻找最小和最大的x值并验证每个点是否有对应的反射点来实现。
267

被折叠的 条评论
为什么被折叠?



