2973 枪毙

2973 枪毙

 

时间限制: 1 s
空间限制: 64000 KB
题目等级 : 青铜 Bronze
 
 
 
 
题目描述 Description

  炼哥的朋友YSH家新填了一台电视,她奶奶看完了黑人赛跑后跑下来对她说:“几个挖煤的小伙子站成一排被枪毙,那个警察不瞄准就开枪了,吓得那几个挖煤的啊,跑得那么快,绳子都拦不住啊……”炼哥听说了后…很无语(当然了),但他突发奇想,要枪毙的人,受到了惊吓,跑得肯定会很快,于是,他自己写出了一个公式:跑的速度=胆小程度*个人体质;跑的速度范围是1~100,胆小程度是1~5,体质是1~10,现在给出N个“将要被枪毙者”的胆小度与体质,求出他们的速度,并选出跑的最快的那个“将要被枪毙者”。

输入描述 Input Description

第一行给出一个数N

接下来的2~N+1行,每行2个数,分别表示胆小度与个人体质,他们的编号从上到下分别是1~N。

输出描述 Output Description

第1~N行为编号1~N人的速度

第N+1行为跑的最快的人的编号,如果有相同速度者,取编号大者输出。

样例输入 Sample Input

3

2 4

3 2

5 4

样例输出 Sample Output

8

6

20

3

数据范围及提示 Data Size & Hint

n<=100000

分类标签 Tags 点此展开
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5 int ans[100001];
 6 int main()
 7 {
 8     int n;
 9     scanf("%d",&n);
10     int maxn=-1;
11     int bh;
12     for(int i=1;i<=n;i++)
13     {
14         int a,b;
15         scanf("%d%d",&a,&b);
16         ans[i]=a*b;
17         if(ans[i]>=maxn)
18         {
19             maxn=ans[i];
20             bh=i;
21         }
22     }
23     for(int i=1;i<=n;i++)
24     {
25         printf("%d\n",ans[i]);
26     }
27     printf("%d",bh);
28     return 0;
29 }

 

内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
小区物业管理系统是一款基于.NET平台开发的软件应用,用于全面管理住宅小区的日常运营。它通过多种功能提升物业管理效率、优化服务质量,并促进业主与物业之间的沟通。在设计过程中,该系统采用了UML(统一建模语言)来确保其结构化和可维护性。UML是一种标准化的建模工具,通过图形化方式描述系统的结构与行为,帮助开发者理解和实现复杂的软件项目。 本项目涵盖了UML的十大模型图,包括用例图、类图、对象图、序列图、协作图、状态图、活动图、组件图、部署图和包图。这些模型图从不同角度描绘系统,例如用例图展示参与者(如业主、物业员)与系统功能的交互;类图定义系统中的类、接口及其关系;对象图是类图的实例;序列图和协作图描述对象间的动态交互;状态图和活动图关注行为变化;组件图和部署图关注物理结构;包图则用于组织模块结构。 压缩包中的“杨平.doc”可能是设计者或项目负责杨平的工作文档,包含项目需求、设计思路等要信息。“任务书.doc”应明确项目的具体任务要求,如功能需求和性能指标。“小区物业管理系统.mdl”是UML模型文件,记录了系统的详细设计。“小区物业”可能是其他相关文件,如源代码或数据库脚本。整个项目提供了从需求分析到系统实现的完整流程,对于学习.NET开发和理解UML建模技术具有要参考价值。开发者通过研究这些模型图,能够更好地构建类似的物业管理系统,提升软件工程实践能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值