一次交换,会让Group A里面的某个数字的数量-1,另一个数字的数量+1;对Group B恰好相反。
于是答案就是xigma(i=1~5,numA[i]-numB[i]>0)(numA[i]-numB[i])/2,如果这个值无法被2整除,则无解,或者如果这个值不等于xigma(i=1~5,numA[i]-numB[i]<0)(-numA[i]+numB[i])/2的话,也无解。
或者如果某个值在两组中出现的总次数无法被2整除,也无解。
#include<cstdio>
using namespace std;
int n,a[110],b[110],num[11],A,B,num2[11];
int main()
{
// freopen("a.in","r",stdin);
scanf("%d",&n);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
for(int i=1;i<=n;++i)
scanf("%d",&b[i]);
for(int i=1;i<=n;++i)
++num[a[i]];
for(int i=1;i<=n;++i)
++num2[b[i]];
for(int i=1;i<=5;++i)
if((num[i]+num2[i])%2==1)
{
puts("-1");
return 0;
}
for(int i=1;i<=5;++i)
if(num[i]-num2[i]<0)
A+=(-num[i]+num2[i]);
else
B+=(num[i]-num2[i]);
if(A!=B || A%2!=0)
{
puts("-1");
return 0;
}
printf("%d\n",A/2);
return 0;
}