# TILT阅读报告

1. low rank matrix

Suppose that we have a rank-r matrix A of size m x n, where r << min(m,n). In many engineering problems, the entries of the matrix are often corrupted by errors or noise, some of the entries could even be missing, or only a set of measurements of the matrix is accessible rather than its entries directly. In general, we model the observed matrix D to be a set of linear measurements on the matrix A, subject to  noise and gross corruptions i.e., D = L(A) + η, where L is a linear operator, and η represents the matrix of corruptions. We seek to recover the true matrix A from D

http://blog.csdn.net/smilebluesky/article/details/41154419 （低秩矩阵在机器视觉中的理解）

（Low-Rank模型及其在图像分析中的应用）

http://www.cnblogs.com/txg198955/p/4096003.html （RASL & TILT）

http://blog.sina.com.cn/s/blog_631a4cc401019gqx.html （CVPR关于low-rank的文章）

LMaFit is a MATLAB package that currently solves the following problems

3. Low rank approximation

In mathematics, low-rank approximation is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.

4. Low-rank method

Chapter8 Sparse and Low-Rank Methods

5. Sparse method

Chapter8 Sparse and Low-Rank Methods

6. Convex optimization

1. Image Congealing (Alignment)

3D场景中，低秩纹理随处可见。但是，从3D场景映射到2D图像之后，由于变形、退化和遮挡，原本的低秩纹理便不再有低秩的性质。

1. 直接利用像素信息，不会产生中间特征
2. 对于形变、遮挡、退化引起的误差鲁棒(robust to gross errors)
3. 对任意大小、任意位置都适用。

gI0具有相同的秩。这个变换群可以描述为如下形式：

Remark1 与随机纹理的区别

1. 视角变换引起的纹理矩阵的变化
2. 量化、噪声、遮挡等引起的纹理矩阵的变化

-形变模型

In this paper, we assume G is either the rotation group SO(2), or the 2D affine group Aff(2), or the homography group GL(3) acting linearly on the image domain.

T是一个确定的李群，在本文中也可是假设为旋转群，2维仿射群或单应群。

-退化模型

E成为误差矩阵(erroe matrix)，在文章中，假设图像中只有一小部分具有较大的误差，因此E可以看做是一个稀疏矩阵(sparse matrix)

||E||0代表E中的非0元素。

Remark2 与仿射不变特征的区别

WYSIWYG-what you see is what you get

Remark3 RASL的区别

Remark4 TPCA的区别

1. 算法

Sparse Representation And Low- Rank Matrix Recovery

[1] V. Chandrasekaran, S. Sanghavi, and P. A. Parrilo, "Sparse and Low-Rank Matrix Decompositions," 2008.

[2] X. Yuan and J. Yang, "Sparse and low-rank matrix decomposition via alternating direction methods," Convergence, vol. Preprint, pp. 1–11, 2009.

[3] R. Vidal, Y. Ma, and S. S. Sastry, Generalized Principal Component Analysis, vol. 27, no. 12. 2016.

--Chapter 8 Sparse and Low-Rank Methods

L0范数是指向量中非0的元素的个数。如果我们用L0范数来规则化一个参数矩阵W的话，就是希望W的大部分元素都是0。这太直观了，太露骨了吧，换句话说，让参数W是稀疏的。OK，看到了"稀疏"二字，大家都应该从当下风风火火的"压缩感知""稀疏编码"中醒悟过来，原来用的漫山遍野的"稀疏"就是通过这玩意来实现的。但你又开始怀疑了，是这样吗？看到的papers世界中，稀疏不是都通过L1范数来实现吗？脑海里是不是到处都是||W||1影子呀！几乎是抬头不见低头见。没错，这就是这节的题目把L0L1放在一起的原因，因为他们有着某种不寻常的关系。那我们再来看看L1范数是什么？它为什么可以实现稀疏？为什么大家都用L1范数去实现稀疏，而不是L0范数呢？

L1范数是指向量中各个元素绝对值之和，也有个美称叫"稀疏规则算子"Lasso regularization）。现在我们来分析下这个价值一个亿的问题：为什么L1范数会使权值稀疏？有人可能会这样给你回答"它是L0范数的最优凸近似"。实际上，还存在一个更美的回答：任何的规则化算子，如果他在Wi=0的地方不可微，并且可以分解为一个"求和"的形式，那么这个规则化算子就可以实现稀疏。这说是这么说，WL1范数是绝对值，|w|w=0处是不可微，但这还是不够直观。这里因为我们需要和L2范数进行对比分析。所以关于L1范数的直观理解，请待会看看第二节。

OK，来个一句话总结：L1范数和L0范数可以实现稀疏，L1因具有比L0更好的优化求解特性而被广泛应用。

nuclear norm 是奇异值的和，rank是非零奇异值的个数。nuclear norm能近似rank就跟l_1 norm能近似l_0norm一样。

0范数是指矩阵非零元素的个数
1

2

A∇I 是关于图像变换矩阵参数的雅克比行列式，那么该优化问题又退化为

ALM算法是用来求解增广拉格朗日乘子法的一般方法，

ALM算法的迭代版本在Bertsekas (2004)中给出，具体在这就不赘述了。

-变换的约束

-多分辨率方法

-分支限界法

1. 算法修改和扩展

2D图像建模为transformed low-rank plus sparse structures model

2D图像还原低秩纹理的问题，建模为一个Sparse Representation And Low- Rank Matrix Recovery的开放问题，并利用凸优化的方法进行求解。

Ma Y, Zhang Z, Liang X. Robust recovery of transform invariant low-rank textures: U.S. Patent 8,463,073[P]. 2013-6-11.

• 0
点赞
• 0
收藏
• 0
评论
03-04
12-10 137
07-19 3655
01-02 2459
12-25 832
09-19 61
05-25 4704
01-03 1193
08-10 4307
11-13 717
06-26 514
05-14 177
09-26 3万+
05-05 1040
12-01 1009
05-04 1483

### “相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。