[ CodeForces 1065 B ] Vasya and Isolated Vertices

\(\\\)

\(Description\)


求一个\(N\)个点\(M\)条边的无向图,点度为 \(0\) 的点最多和最少的数量。

  • \(N\le 10^5,M\le \frac {N\times (N-1)}{2}\)

\(\\\)

\(Solution\)


关于最少的数量,注意到一条边会增加两个点度,所以最多能带来 \(2M\) 个点度,最少的零点度点数就是 \(max(N-2M,0)\)

关于最多的数量,要知道 \(N\) 个点的完全图边数是 \(\frac {N\times (N-1)}{2}\) 。然后就可以二分上界是什么了。

事实上线性扫一下并不会 \(T\) ......

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 100010
#define R register
#define gc getchar
using namespace std;
typedef long long ll;

inline int rd(){
  int x=0; bool f=0; char c=gc();
  while(!isdigit(c)){if(c=='-')f=1;c=gc();}
  while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
  return f?-x:x;
}

ll n,m,ans,cnt[N];

int main(){
  scanf("%lld%lld",&n,&m);
  printf("%lld ",max(0ll,n-m*2));
  while(m>ans*(ans-1)/2) ++ans;
  printf("%lld\n",n-ans);
  return 0;
}

转载于:https://www.cnblogs.com/SGCollin/p/9794858.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值