位图是用一个btye位来表示一个数据是否存在,再通过哈希函数确定一个数据所在的位置,这样处理会使当仅需要判断一个数据在不在的时候大大的提高效率,缩小内存的使用,如一个数据为int型,而一个int型的数据构成的位图能表示32个数据的存在状态。代码实现如下:
Bitmap.h:
#include<vector>
class BitMap
{
public:
BitMap(size_t size)
:_size(0)
{
Size(size);
}
void Set(size_t key)
{
size_t index = key / 32;
size_t offset = key % 32;
_map[index]=_map[index] | (1 << offset);
++_size;
}
void Reset(size_t key)
{
size_t index = key / 32;
size_t offset = key % 32;
if ((_map[index] >> offset) & 1)
{
_map[index] = _map[index] & (~(1 << offset));
++_size;
}
}
void Size(size_t size)
{
_map.resize(size);
}
bool Touch(size_t key)
{
size_t index = key / 32;
size_t offset = key % 32;
if ((_map[index] >> offset) & 1)
return true;
return false;
}
protected:
size_t _size;
vector<size_t> _map;
};
布隆过滤器:布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。(百度百科)
这里所说的映射函数我们一般定义几个,这样就可以加大避免冲突的几率,这里我写了个key为string 类的布隆过滤器,仅供参考:
BloomFilter.h:
#include"BitMap.h"
size_t BKDRHash(const char *str)//这里定义了5个映射算法,仅供参考
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = hash * 131 + ch;
}
return hash;
}
size_t SDBMHash(const char *str)
{
register size_t hash = 0;
while (size_t ch = (size_t)*str++)
{
hash = 65599 * hash + ch;
//hash = (size_t)ch + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
size_t RSHash(const char *str)
{
register size_t hash = 0;
size_t magic = 63689;
while (size_t ch = (size_t)*str++)
{
hash = hash * magic + ch;
magic *= 378551;
}
return hash;
}
size_t APHash(const char *str)
{
register size_t hash = 0;
size_t ch;
for (long i = 0; ch = (size_t)*str++; i++)
{
if ((i & 1) == 0)
{
hash ^= ((hash << 7) ^ ch ^ (hash >> 3));
}
else
{
hash ^= (~((hash << 11) ^ ch ^ (hash >> 5)));
}
}
return hash;
}
size_t JSHash(const char *str)
{
if (!*str) // 以保证空字符串返回哈希值0
return 0;
register size_t hash = 1315423911;
while (size_t ch = (size_t)*str++)
{
hash ^= ((hash << 5) + ch + (hash >> 2));
}
return hash;
}
class BloomFilter
{
public:
BloomFilter(size_t size)
:_capacity(size)
, map(size)
{}
void Set(const string &key)
{
size_t index1 = BKDRHash(key.c_str())%_capacity;
size_t index2 = SDBMHash(key.c_str()) % _capacity;
size_t index3 = RSHash(key.c_str()) % _capacity;
size_t index4 = APHash(key.c_str()) % _capacity;
size_t index5 = JSHash(key.c_str()) % _capacity;
map.Set(index1);
map.Set(index2);
map.Set(index3);
map.Set(index4);
map.Set(index5);
}
bool Touch(const string &key)
{
if (!map.Touch(BKDRHash(key.c_str()) % _capacity))
return false;
if (!map.Touch(SDBMHash(key.c_str()) % _capacity))
return false;
if (!map.Touch(RSHash(key.c_str()) % _capacity))
return false;
if (!map.Touch(APHash(key.c_str()) % _capacity))
return false;
if (!map.Touch(JSHash(key.c_str()) % _capacity))
return false;
return true;
}
protected:
size_t _capacity;
BitMap map;
};
如有疑问希望提出,有错误希望指正
转载于:https://blog.51cto.com/10743407/1773175