Codeforces 776E: The Holmes Children (数论 欧拉函数)

题目链接

先看题目中给的函数f(n)和g(n)

  对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n)

证明f(n)=phi(n)

    设有命题 对任意自然数x满足x<n,gcd(x,n)=1等价于gcd(x,y)=1  成立,则该式显然成立,下面证明这个命题。
    
    假设gcd(x,y)=1时,gcd(x,n)=k!=1,则n=n'k,x=x'k,gcd(x,y)=gcd(x,n-x)=gcd(x'k,(n'-x')k)=k,与假设gcd(x,y)=1不符,故gcd(x,y)=1时,gcd(x,n)=1。同理可证gcd(x,n)=1时,gcd(x,y)=1。
    
    综上,f(n)=phi(n)

  对于g(n),,这个本人就不在博客里献丑了,推荐找本专门讲数论的书看下,估计都会有,这个可以当成是结论用,即 n的所有因数的欧拉函数之和等于n本身

 

 

解决了函数f(n)和g(n)的意义,剩下的就好解多了

时间上,由于连续进行两次n=phi(n)的运算至少可以将n减小为原来的一半,故肯定是不会T啦

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;

//单独求解单个phi(x)
LL Eular(LL n)
{
    LL ret=n;
    for(LL i=2; i*i<= n; i++)
        if(n%i==0)
        {
            ret-=ret/i;
            while(n%i==0) n/= i;
        }
    if(n>1) ret-=ret/n;
    return ret;
}

LL n,k;

int main()
{
    while(cin>>n>>k)
    {
        k=(k+1)/2;
        while(k-- && n>1)
            n=Eular(n);
        cout<<n%1000000007<<endl;
    }
}
View Code

 

转载于:https://www.cnblogs.com/Just--Do--It/p/6437212.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值