Matlab实现Viterbi算法,隐马尔可夫模型(HMM)的MATLAB实现——Viterbi算法

该博客详细介绍了如何在Matlab中应用Viterbi算法来解决隐马尔可夫模型(HMM)的解码问题。通过动态规划方法找到观测序列的最优路径,并给出了具体的MATLAB代码实现,包括初始化、递推、终止及最优路径回溯四个步骤。此外,还提供了李航《统计学习方法》中的实例进行说明。
摘要由CSDN通过智能技术生成

维特比算法实际是用动态规划求解隐马尔可夫模型解码问题,即用动态规划求概率最大路径(最优路径)。代码中有示例,来自李航《统计学习方法》

function [Delta,Psi,P,I] = Viterbi(A,B,Pi,O)

% 函数功能:利用维特比算法找到观测序列O的最优路径

%

% 参考文献:李航《统计学习方法》

%

% 思路:

% 1,初始化

% delta_1(i) = Pi_i * b_i(o1), i = 1,2,...,N

% psi_1(i) = o, i = 1,2,...,N

% 2,递推,对于t = 2,3,...,T

% delta_t(i) = max_1-from-1-to-N(delta_t-1(j) * a_ji) * b_i(ot), i = 1,2,...,N

% psi_t(i) = arg max_1-from-1-to-N(delta_t-1(j) * a_ji), i = 1,2,...,N

% 3,终止

% 最优路径概率P* = max_1-from-1-to-N(delta_T(i))

% 最优路径终点i*_T = arg max_1-from-1-to-N(delta_T(i))

% 4,最优路径回溯,对于t = T-1,T-2,...,1

% i*_t = psi_t+1(i*_t+1)

% 最优路径I* = (i*_1,i*_2,...,i*_T)

% 【提示:“思路”中的i,j和本程序中的i,j不存在对应关系,只是方便理解原理】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值