1、K邻近算法

1 定义

给定一个训练数据,对于新输入的实例,在训练集中找到与该实例最近邻的k个实例,按照少数服从多数原则,这k个实例的多数属于哪个类,则该实例就属于哪个类。

模型: k近邻算法的训练数据集本身就是模型

2 判断机器学习算法的性能

不能把所有的数据集进行训练,需要选取一部分为训练样本,一部分为测试样本,用测试样本测试性能

import numpy as np


def train_test_split(X, y, test_ratio=0.2, seed=None):
    """将数据 X 和 y 按照test_ratio分割成X_train, X_test, y_train, y_test"""
    assert X.shape[0] == y.shape[0], \
        "the size of X must be equal to the size of y"
    assert 0.0 <= test_ratio <= 1.0, \
        "test_ration must be valid"
    
    # 如果下次测试要还原上次随机过程,可以设置这个种子
    if seed:
        np.random.seed(seed)

    # 0~len(X)的乱序数,因为需要对(X,y)进行乱序
    shuffled_indexes = np.random.permutation(len(X))

    test_size = int(len(X) * test_ratio)
    test_indexes = shuffled_indexes[:test_size]
    train_indexes = shuffled_indexes[test_size:]

    X_train = X[train_indexes]
    y_train = y[train_indexes]

    X_test = X[test_indexes]
    y_test = y[test_indexes]

    return X_train, X_test, y_train, y_test

复制代码

3 分类准确性:

预测正确的数量 / 预测的数量

def accuracy_score(y_true, y_predict):
        '''计算y_true和y_predict之间的准确率'''
        assert y_true.shape[0] == y_predict.shape[0], \
            "the size of y_true must be equal to the size of y_predict"
        
        return sum(y_true == y_predict) / len(y_true)
复制代码

4 KNN分类器代码

import numpy as np
from math import sqrt
from collections import Counter
from .metrics import accuracy_score

class KNNClassifier:

    def __init__(self, k):
        """初始化kNN分类器"""
        assert k >= 1, "k must be valid"
        self.k = k
        self._X_train = None
        self._y_train = None

    def fit(self, X_train, y_train):
        """根据训练数据集X_train和y_train训练kNN分类器"""
        assert X_train.shape[0] == y_train.shape[0], \
            "一个样本必须对应一个分类"
        assert self.k <= X_train.shape[0], \
            "k必须要小于样本数."

        self._X_train = X_train
        self._y_train = y_train
        return self

    def predict(self, X_predict):
        """给定待预测数据集X_predict,返回表示X_predict的结果向量"""
        assert self._X_train is not None and self._y_train is not None
        assert X_predict.shape[1] == self._X_train.shape[1], \
                "预测实例要与样本实例的特征个数相同"

        y_predict = [self._predict(x) for x in X_predict]
        return np.array(y_predict)

    def _predict(self, x):
        """给定单个待预测数据x,返回x的预测结果值"""
        assert x.shape[0] == self._X_train.shape[1], \
            "x为一个预测实例特征行向量,要与样本的特征量相同"
       
       # 与每一个样本的距离集合
        distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in self._X_train]
        #distance从小到大排序的索引index
        nearest = np.argsort(distances)

        topK_y = [self._y_train[i] for i in nearest[:self.k]]
        votes = Counter(topK_y)
        # 假如topK_y=[1, 1, 1, 1, 1, 0], 则votes = Counter({0: 1, 1: 5}),
        #votes.most_common(1) = [(1, 5)],列表里是个元祖votes.most_common(1)[0] = (1,5)
        return votes.most_common(1)[0][0]

    def score(self, X_test, y_test):
        """根据测试数据集 X_test 和 y_test 确定当前模型的准确度"""

        y_predict = self.predict(X_test)
        return accuracy_score(y_test, y_predict)

    def accuracy_score(y_true, y_predict):
        '''计算y_true和y_predict之间的准确率'''
        assert y_true.shape[0] == y_predict.shape[0], \
            "the size of y_true must be equal to the size of y_predict"
        
        return sum(y_true == y_predict) / len(y_true)

    def __repr__(self):
        return "KNN(k=%d)" % self.k
复制代码

5 超参数和模型参数

  • 超参数:在算法运行前需要确定的参数
  • 模型参数:算法过程中学习的参数

KNN算法没有模型参数 knn的超参数:

  • 1、k值大小
  • 2 分类规则:投票决策还是距离
  • 3 超参数p: 如果算距离的话,用哪种距离公式,也就是明可夫斯基距离

5.1寻找最好的k

best_score = 0.0
best_k = -1
for k in range(1, 11):
    knn_clf = KNeighborsClassifier(n_neighbors=k)
    knn_clf.fit(X_train, y_train)
    score = knn_clf.score(X_test, y_test)
    if score > best_score:
        best_k = k
        best_score = score
        
print("best_k =", best_k)
print("best_score =", best_score)
复制代码

运行结果: best_k = 4 best_score = 0.991666666667

注意:如果k在边界的话,有可能会有更好的k值,加入k结果为10的话,则k可能还有更好的值,应该取值(10,20)再测试一下

5.2 分类决策规则选取哪个?

  • 个数的话:蓝色获胜
  • 如果算上距离的话,考虑距离:红色:1 ,蓝色:1/3+1/4=7/12 ,则红色胜
  • 还有一个好处,解决平票的问题:
best_score = 0.0
best_k = -1
best_method = ""
# 两种决策规则:个数or距离
for method in ["uniform", "distance"]:
    for k in range(1, 11):
        knn_clf = KNeighborsClassifier(n_neighbors=k, weights=method)
        knn_clf.fit(X_train, y_train)
        score = knn_clf.score(X_test, y_test)
        if score > best_score:
            best_k = k
            best_score = score
            best_method = method
        
print("best_method =", best_method)
print("best_k =", best_k)
print("best_score =", best_score)
复制代码

结果为: best_method = uniform best_k = 4 best_score = 0.991666666667

5.3 搜索明可夫斯基距离相应的p

best_score = 0.0
best_k = -1
best_p = -1

for k in range(1, 11):
    for p in range(1, 6):
        knn_clf = KNeighborsClassifier(n_neighbors=k, weights="distance", p=p)
        knn_clf.fit(X_train, y_train)
        score = knn_clf.score(X_test, y_test)
        if score > best_score:
            best_k = k
            best_p = p
            best_score = score
        
print("best_k =", best_k)
print("best_p =", best_p)
print("best_score =", best_score)
复制代码

结果为: best_k = 3 best_p = 2 best_score = 0.988888888889

默认是明可夫斯基距离,也有其他的公式:scikit-learn.org/stable/modu…,比如在网格搜索中加上metric参数

5.4 网格搜索和更多kNN中的超参数

Grid Search使用方式:列表里放几个字典

param_grid = [
    {
        'weights': ['uniform'], 
        'n_neighbors': [i for i in range(1, 11)]
    },
    {
        'weights': ['distance'],
        'n_neighbors': [i for i in range(1, 11)], 
        'p': [i for i in range(1, 6)]
    }
]
复制代码

使用方式

knn_clf = KNeighborsClassifier()
from sklearn.model_selection import GridSearchCV
grid_search = GridSearchCV(knn_clf, param_grid)
grid_search.fit(X_train, y_train)


返回结果:
GridSearchCV(cv=None, error_score='raise',
       estimator=KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights='uniform'),
       fit_params={}, iid=True, n_jobs=1,
       param_grid=[{'weights': ['uniform'], 'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}, {'weights': ['distance'], 'n_neighbors': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'p': [1, 2, 3, 4, 5]}],
       pre_dispatch='2*n_jobs', refit=True, return_train_score=True,
       scoring=None, verbose=1)
复制代码
# 获取最好的分类器
grid_search.best_estimator_

结果为:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
           metric_params=None, n_jobs=1, n_neighbors=3, p=3,
           weights='distance')

# 获取最好的准确率
grid_search.best_score_

结果为:
0.98538622129436326
复制代码

其他的超参数:查文档吧:scikit-learn.org/stable/modu…

6 数据归一化

  • 解决方案:将所有数据映射到同一尺度

  • 最值归一化:把所有数据映射到0-1之间,使用于分布有明显边界的情况(图像是0-255之间,学生成绩分布等),如果无边界的话,就不好办了(如收入分布)

  • 均值方差归一化:把所有数据归一到均值为0,方差为1的分布中

6.1 如何对测试数据集进行归一化

import numpy as np


class StandardScaler:

    def __init__(self):
        self.mean_ = None
        self.scale_ = None

    def fit(self, X):
        """根据训练数据集X获得数据的均值和方差"""
        assert X.ndim == 2, "The dimension of X must be 2"

        self.mean_ = np.array([np.mean(X[:,i]) for i in range(X.shape[1])])
        self.scale_ = np.array([np.std(X[:,i]) for i in range(X.shape[1])])

        return self

    def transform(self, X):
        """将X根据这个StandardScaler进行均值方差归一化处理"""
        assert X.ndim == 2, "The dimension of X must be 2"
        assert self.mean_ is not None and self.scale_ is not None
        assert X.shape[1] == len(self.mean_), \
               "每一列对应一个均值"

        resX = np.empty(shape=X.shape, dtype=float)
        for col in range(X.shape[1]):
            resX[:,col] = (X[:,col] - self.mean_[col]) / self.scale_[col]
        return resX

复制代码

使用方式:

from sklearn.preprocessing import StandardScaler 
standardScalar = StandardScaler() 
standardScalar.fit(X_train)
# 对训练集归一化
X_train = standardScalar.transform(X_train)
# 对测试集归一化
X_test_standard = standardScalar.transform(X_test) 

使用归一化后的数据进行knn分类
from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier(n_neighbors=3)
knn_clf.fit(X_train, y_train)
knn_clf.score(X_test_standard, y_test)
复制代码

7 小结

分割样本为训练集与测试集-> 数据归一化处理-> 通过判断分类的准确性,使用网格搜索,确定最好的超参数,简历一个模型

缺点:

  • 最大缺点:效率低下,如果训练集有m个样本,n个特征,则预测每一个新的数据,需要O(m*n),优化:使用树结构:KD-Tree,Ball-Tree等
  • 高度数据相关:假设三近邻算法,如果预测结果中有两个是错误的,就有问题了
  • 预测结果不具有可解释性:只能拿到预测结果,但是不知道为什么是这个类别,不能以此为基础去发现新的理论
  • 维数灾难:随着维度的增加,“看似相近”的两个点之间的距离越来越大,解决方法--降维

声明:此文章为本人学习笔记,课程来源于慕课网:python3入门机器学习经典算法与应用。在此也感谢bobo老师精妙的讲解。

如果您觉得有用,欢迎关注我的公众号,我会不定期发布自己的学习笔记、AI资料、以及感悟,欢迎留言,与大家一起探索AI之路。

转载于:https://juejin.im/post/5ce577b5518825332978ee7d

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值