基础算法—快速幂详解

幂运算是非常常见的一种运算,求取$a^n$,最容易想到的方法便是通过循环逐个累乘,其复杂度为O(n),这在很多时候是不够快的,所以我们需要一种算法来优化幂运算的过程。

一、快速幂——反复平方法

该怎样去加速幂运算的过程呢?既然我们觉得将幂运算分为n步进行太慢,那我们就要想办法减少步骤,把其中的某一部分合成一步来进行。

比如,如果$n$能被2整除,那我们可以先计算一半,得到$a^{n/2}$的值,再把这个值平方得出结果。这样做虽然有优化,但优化的程度很小,仍是线性的复杂度。

再比如,如果我们能找到$2^k = n$,那我们就能把原来的运算优化成$((a^2)^2)^2...$,只需要$k$次运算就可以完成,效率大大提升。可惜的是,这种条件显然太苛刻了,适用范围很小。不过这给了我们一种思路,虽然我们很难找到$2^k = n$,但我们能够找到$2^{k_1} + 2^{k_2} + 2^{k_3} +......+ 2^{k_m} = n$。这样,我们可以通过递推,在很短的时间内求出各个项的值。

我们都学习过进制与进制的转换,知道一个$b$进制数的值可以表示为各个数位的值与权值之积的总和。比如,$2$进制数$1001$,它的值可以表示为10进制的$1\times2^3 + 0\times2^2 + 0\times2^1 + 1\times2^0$,即9。这完美地符合了上面的要求。可以通过$2$进制来把$n$转化成$2^{k_m}$的序列之和,而$2$进制中第$i$位(从右边开始计数,值为$1$或是$0$)则标记了对应的$2^{i - 1}$是否存在于序列之中。譬如,$13$为二进制的$1101$,他可以表示为$2^3 + 2^2 + 2^0$,其中由于第二位为$0$,$2^1$项被舍去。

如此一来,我们只需要计算$a、a^2、a^4、a^8......a^{2^{k_m}}$的值(这个序列中的项不一定都存在,由$n$的二进制决定)并把它们乘起来即可完成整个幂运算。借助位运算的操作,可以很方便地实现这一算法,其复杂度为O(logn)。

typedef long long ll;
ll mod;
ll qpow(ll a, ll n)//计算a^n % mod
{
    ll re = 1;
    while(n)
    {
        if(n & 1)//判断n的最后一位是否为1
            re = (re * a) % mod;
        n >>= 1;//舍去n的最后一位
        a = (a * a) % mod;//将a平方
    }
    return re % mod;
}

取模运算一般情况下是需要的,当然也可以省去。

二、矩阵快速幂

需要进行幂运算的不仅仅只有整数,比如,在POJ3070 Fibonacci中,就需要我们快速地完成方阵的幂运算。知道了如何做快速幂,我们还可以将同样的思想运用在其他地方。除了乘法的规则与普通快速幂不同之外不同,其他的细节并没有什么差别。

实现矩阵快速幂的一种方法如下

struct matrix//定义一个结构体,方便传递值
{
    int m[maxn][maxn];
};

/*
maxn和mod由全局定义,其中mod根据需要可以省去
*/

matrix mat_multi(matrix a, matrix b)//矩阵求积
{
    matrix ans;
    for(int i = 0;i < maxn;i++)
    {
        for(int j = 0;j < maxn;j++)
        {
            ans.m[i][j] = 0;
            for(int k = 0;k < maxn;k++)
            {
                ans.m[i][j] += (a.m[i][k] % mod * b.m[k][j] % mod) % mod;
                ans.m[i][j] %= mod;
            }
        }
    }
    return ans;
}

matrix mat_quickpow(matrix a, int n)//矩阵快速幂
{
    matrix ans;
    for(int i = 0;i < maxn;i++)
    {
        for(int j = 0;j < maxn;j++)
        {
            if(i == j)
                ans.m[i][j] = 1;
            else
                ans.m[i][j] = 0;//这里要初始化为单位矩阵,类比普通快速幂这里初始化为1
        }
    }
    while(n != 0)//方法与普通快速幂相同,只有乘法的实现不同
    {
        if(n & 1)
            ans = mat_multi(a, ans);
        a = mat_multi(a, a);
        n >>= 1;
    }
    return ans;
}

 

转载于:https://www.cnblogs.com/sun-of-Ice/p/9330352.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值