克里格法是比较灵活和准确的网格化方法之一,通常是网格化数据时推荐的一种。它可以通过在整体预测中给予较小的权重来补偿集群数据。克里格的缺点之一就是比其他方法慢。它也可以推断超出数据Z值范围的网格值。
每个网格节点值都基于与节点相邻的已知数据点。每个数据点通过与节点的距离加权。这样,离节点越远的点在节点的估计中权重就越小。例如,为了计算网格节点A处的Z值,使用以下等式:
其中ZA是网格节点A的估计值,n是估计中使用的相邻数据值的数量,Z i是具有权重W i的位置i处的值。权重的值将总计为1以确保对群集数据点没有误差。如果应用漂移和搜索半径等,公式会变得更复杂。
下面是一个分类散点图,它显示了使用克里格方法网格的一组数据值。
左图为分类散点图,右图表示使用克里格网格方法生成等高线图。
在Surfer中,Kriging的默认属性是不搜索数据点。除非另外指定,否则使用默认属性。要将网格化方法设置为Kriging,请在“ 网格数据”对话框中将“ 网格化方法”更改为“ 克里格Kriging”。要自定义Kriging,请点击高级选项Advanced Options,以调出Kriging高级选项。
Surfer网格化方法的基本知识-克里格法(Kriging)
最新推荐文章于 2024-02-23 14:29:56 发布
克里格法是一种灵活且精确的网格化方法,常用于数据网格化。它通过加权相邻数据点来估计网格节点值,权重随距离递减。在Surfer软件中,可以选择克里格法进行网格化,通过高级选项可自定义变异函数模型、克里格类型、漂移类型等。搜索选项允许调整搜索参数,如搜索扇区和椭圆,以适应不同数据集。此外,Surfer还支持断层线以处理地形不规则情况。
摘要由CSDN通过智能技术生成