问题描述
给定一个由n个互异的关键字组成的序列K={k1,k2,...,kn},且关键字有序,对于每一个关键字ki,一次搜索为ki的概率是pi。某些搜索的值可能不在K内,因此还有n+1个虚拟键d0,d1,...,dn代表不再K内的值。d0代表所有小于k1的值,dn代表所有大于kn的值,对于i=1,2,...,n-1,di代表所有位于ki和ki+1之间的值。对每个虚拟键di,一次搜索对应于di的概率是qi。定义在T内一次搜索的期望代价为E=∑(depth(ki)+1)*pi+∑(depth(di)+1)*qi=1+∑depth(ki)*pi+∑depth(di)*qi
一棵最优二叉查找树就是期望代价最小的BST。
注意:
1)一颗最优二叉树不一定是一颗整体高度最小的树;也不一定总把具有最大概率的关键字作为根节点。
2)二叉查找树的子树必定包含连续范围内的关键字。
3)当一颗树成为一个节点的子树时,它的期望代价增加值为该树中所有概率的总和。
最优子结构
设包含有序关键字(ki, ..., kj)的最优二叉查找树以kr(i≤r≤j)为根节点,则其左子树(ki, ..., kr-1)和右子树(kr+1, ..., kj)也同样为最优二叉查找树。
状态转移方程
e[i,j]表示搜索一棵包含关键字ki...kj的最优二叉树的平均代价。
w[i,j]表示含关键字ki...kj的子树的概率总和。
代码实现
//最优二叉查找树,利用动态规划实现 #include<iostream> using namespace std; void Optimal_BST(double *p,double *q,int length,double (*e)[20],int (*root)[20]) { int i,j,k,r; double t; double w[20][20]={0}; for(i=1;i<=length+1;i++) { e[i][i-1]=q[i-1]; w[i][i-1]=q[i-1]; } //i为关键字之间的长度 for(i=1;i<=length;i++) { //从下标为j开始的关键字到下标为k的关键字 for(j=1;j<=length-i+1;j++) { k=i+j-1; e[j][k]=0x7fffffff; w[j][k]=w[j][k-1]+p[k]+q[k]; //选取j到k之间的某个下标的关键字作为从j到k的根,如果组成的树的期望值当前最小,则r为从j //到k的根节点 for(r=j;r<=k;r++) { t=e[j][r-1]+e[r+1][k]+w[j][k]; if(e[j][k]>t) { e[j][k]=t; //r即为从下标j到k的根节点 root[j][k]=r; } } } } } void Construct_Optimal_BST(int (*root)[20],int i,int j,bool flag) { if(flag==0) { cout<<"k"<<root[i][j]<<" 是根"<<endl; flag=1; } int r=root[i][j]; //如果左子树是叶子 if(r-1<i) { cout<<"d"<<r-1<<" is the left child of "<<"K"<<r<<endl; } //如果左子树不是叶子 else { cout<<"k"<<root[i][r-1]<<" is the left child of "<<"K"<<r<<endl; Construct_Optimal_BST(root,i,r-1,1); } //如果右子树是叶子 if(r>=j) { cout<<"d"<<j<<" is the right child of "<<"K"<<r<<endl; } //如果右子树不是叶子 else { cout<<"k"<<root[r+1][j]<<" is the right child of "<<"K"<<r<<endl; Construct_Optimal_BST(root,r+1,j,1); } } int main() { double p[8]={0,0.04,0.06,0.08,0.02,0.10,0.12,0.14}; double q[8]={0.06,0.06,0.06,0.06,0.05,0.05,0.05,0.05}; double e[20][20]={0}; int root[20][20]={0}; Optimal_BST(p,q,6,e,root); cout<<e[1][5]<<endl; Construct_Optimal_BST(root,1,5,0); return 0; }
运行结果:
参考
最优二叉查找树-http://blog.csdn.net/liuzhanchen1987/article/details/7853219
转载于:https://blog.51cto.com/8672742/1368367