原题: 一副从1到n的牌,每次从牌堆顶取一张放桌子上,再取一张放牌堆底,直到手机没牌,最后桌子上的牌是从1到n有序,设计程序,输入n,输出牌堆的顺序数组 。
微软君给的算法: 取一个1~n的数组,这里为了说明取n=5。按照题目中的规则变换,得到数组:[1 3 5 4 2],将该数组下标与值互换得到[1 5 2 4 3],即为答案。解释:[1 3 5 4 2]的意义是,经过变换,原数组中3号位置的数字现在2号槽,原数组中5号位置的数字现在3号槽... 现在已知变换后的槽存放的是1~n,故只需将下标与值互换即可得到待求数组。
// 计算约瑟夫变相环
/*
julia代码 变相约瑟夫环。知乎上一个小米面试题的微软解法(细节去知乎找找看)
原题: 一副从1到n的牌,每次从牌堆顶取一张放桌子上,再取一张放牌堆底,直到手机没牌,最后桌子上的牌是从1到n有序,设计程序,输入n,输出牌堆的顺序数组 。
微软君给的算法: 取一个1~n的数组,这里为了说明取n=5。按照题目中的规则变换,得到数组:[1 3 5 4 2],将该数组下标与值互换得到[1 5 2 4 3],即为答案。解释:[1 3 5 4 2]的意义是,经过变换,原数组中3号位置的数字现在2号槽,原数组中5号位置的数字现在3号槽... 现在已知变换后的槽存放的是1~n,故只需将下标与值互换即可得到待求数组。
*/
// joseph2
// 构成一个Vec队列
fn make_array(num: i32) -> Vec<i32>{
let mut v = Vec::new();
for element in 1..(num+1) {
v.push(element);
}
return v;
}
// 根据原始数据构成一个中间Vec
fn count_mid_array(array: &mut Vec<i32>) -> Vec<i32>{
let mut v = Vec::new();
while array.len() > 1{ // 长度大1
let t1 = array.remove(0); // 移除首个
v.push(t1); // 插入中间组
let t2 = array.remove(0); // 再移除首个
array.push(t2); // 插入到原组结尾
}
v.push(array[0]); // 插入剩余的最后一个
return v;
}
// 转换结果数组
fn trans_array(n: i32, new_array: Vec<i32>) -> Vec<i32>{
let mut fin_array = Vec::new();
for i in 1..(n + 1) {
for (pos, e) in new_array.iter().enumerate(){ // 带索引
if i == *e{ // 这里对比值要*解引用
fin_array.push((pos+1) as i32); // 插入,pos是usize要转换一下
}
}
}
return fin_array
}
// 测试程序入口
pub fn joseph2_test(){
let n = 1210;
let mut v = make_array(n);
println!("原始数组 {:?}", v);
let v2 = count_mid_array(&mut v);
println!("计算中间组 {:?}", v2);
let fin_v = trans_array(n, v2);
println!("最终结果: {:?}", fin_v);
}
fn main(){
joseph2_test();
}