将COMP20003中关于Graph的内容进行总结,内容来自COMP20003,中文术语并不准确,以英文为准。
Graph G = {V, E}
顶Vertices V: can contain information
边Edges E (links between vertices): can have direction and/or weight
种类:
- 有向图(directed graph):边(edge)有方向。
- 弱有向连接图Weakly connected directed graph:将有向的边替换成无向的边后能得到无向连通图。
-
- 强有向连接图Strongly connected directed graph:在有向图中,任意顶通过边到达任意顶。
-
-
- Strongly connected components in a directed graph:在同一区域(component)的顶可以到达所有同一区域的顶。
-
- 无向图(undirected graph):边(edge)没有方向。
- 无向连通图Connected Undirected graph: 任意的顶均可通过边连接到其他顶,包括间接。
-
- 无向非连通图Unconnected Undirected graph:即不是无向连通图Connected Undirected graph。
完全图Complete graph:每个顶能直接到其他顶。对于无向图至少需要V(V-1)/2个顶,有向图至少需要V(V - 1)个顶。
用数据结构表示:
用二维数组(Matrix)表示:
注意:未连接用无穷大表示,而不是用0表示。
复杂度O(V2)
用链表表示:
复杂度O(V + E)
图的遍历Traversal
Depth-first search(DFS)深度优先搜索,使用stack实现,基于stack先进后出的特性。
Breadth first search(BFS)广度优先搜索,使用queue实现,基于queue先进先出的特性。
图的拓扑:应用于有向无环图(Directed Acyclic Graphs,简称DAG)
Topological sort: a partial ordering that fulfils certain constraints. All edges e(i, j) go in horizontal i -> j direction
变成水平排列,只能从左边指向右边。
拓扑涉及的概念:
indegree:该顶被边到达的次数。
outdegree:由该顶开始边连接的次数。
能有拓扑结构,DAG图必须满足有一个source(indegree为0)和sink(outdegree为0)。
如果在DAG图中存在汉密尔顿路径(Hamiltonian path,即从某个顶开始通过边不重复的经过所有点的路径,想想游戏一笔画),则该拓扑是唯一的。
代码:https://github.com/Will-Zhu-27/Algorithms-and-Data-Structures/tree/master/graph/Topological%20sort
算法:
Dijkstra's algorithm for single source shortest path
Dijkstra单源最短路径算法:一个顶到其他顶的最短路径。
基于Greedy algorithm: 最短路径中的子路径也是最短路径,即A到Y的最短路径经过X,那么该路径中从A到X的部分是A到X的最短路径。
假定没有负值的边。
使用优先队列priority queue。
步骤:
使用变量数组dist记录从目标定到该顶的最短距离,数组pred记录经过该顶的前一个顶,edgeWeight(a, b):顶a到顶b边的值。
-
- 将dist自己到自己为0,其余最大(MAX_INT)。pred均为NULL。
- 将所有顶装入优先队列,按照对应的dist值的大小为优先度。
- 当优先队列不为空时,pop一个顶a,为空则结束。
- LOOP:如果dist[a] + edgeWeight(a, b) < dist[b],b为跟顶a有边连接的顶,则更新顶b的信息:dist[b] = dist[a] + edgeWeight(a, b),pred[b] = a,更新优先队列中的顺序(也可pop时再根据有限度pop)。
- 步骤3。
复杂度分析:
实现代码:https://github.com/Will-Zhu-27/Algorithms-and-Data-Structures/tree/master/graph/shortestPaths/dijkstra
Warshall algorithm for transitive closure -- unconnected directed graph
Warshall算法:用于判断有向图中顶与顶之间是否能通过边联通(包括间接的)。
用二维数组储存基础(直接)边连接的信息,使用三次循环。
其中i for intermediate, s for source, t for to,循环变量怎么命名的并不重要,重要的是最外圈的循环变量i必须作为判断的中间变量,改变它的位置会导致算法出错。我的理解为:算法是基于贪心算法,
当循环到 i 时,就要得到通过 0 到 i 是否有最短路径,然后逐渐增大i达到在全部顶中的最短路径。此问题也可看在知乎上的这个问题的回答:https://www.zhihu.com/question/30955032
Floyd-Warshall algorithm for all pairs shortest paths
Floyd-Warshall算法:图中每个顶到其他顶的最短路径。
在Warshall的基础上稍作改变,二维数组储存的是顶之间weight的信息。
同样的,最外圈的循环变量i必须作为判断的中间变量!另外用C实现时,虽然图里不连接用了∞表示, C中用 INT_MAX / 2 表示, 因为if 判断时会产生数据溢出问题。
要记录路径也只要加个二维数组记录即可。
复杂度:θ(V3)
代码:https://github.com/Will-Zhu-27/Algorithms-and-Data-Structures/tree/master/graph/AllPairsShorestPaths/Floyd-Warshall
Floyd-Warshall和dijkstra在计算all pairs shorest paths上的优劣:
循环V次dijkstra也可得到全部顶的最短路径,复杂度为:O((V2 + V * E)logV)
Floyd-Warshall复杂度为θ(V3)。
对于sparse graph with positive edge weights(V>>E),Dijkstra用于all pair shortest path更好
对于dense graph with positive edge weights(E>>V) Floyd-Warshall更好
最小生成树 Minimum Spanning Tree, MST
要求:
undirected weighted graphs
Graph must be connected 无向非连通图
MST特点:
包括所有的顶
minimum sum of edge weights,包含连接顶的边和最小,数量为V-1
MST中没有循环(cycles)。
简言之,使用最小weight的edge将所有顶连接到。
如果所有的edge的weight不同,那么MST是唯一的。
计算MST的算法有Prim和Kruskal。
Prim:通过添加下一个最近的顶完成MST。
需要使用优先队列。
准备:dist[V]初值MAX,pred[V]初值NULL,inMst[V]初值FALSE。
步骤:
-
- 将某一顶 (随便那个)作为起始点root,dist[ root ] = 0。将全部顶enqueue优先队列,以dist为优先级。
- pop一个顶a,所有与a直接相连的顶b:如果inMst[b]==FALSE && a到b的edge < dist[b],则更新dist[b]等于该edge,更新pred[b]=a,调整优先队列中的顺序。
- inMst[a] = TRUE;
- 优先队列为空->结束, 不为空->步骤2
若手工计算,以a为起始点为例,与a相连的有b和c,到b更短,选b。
将a和b作为一个整体,与整体相连的有c、d、e,c和d到整体(最短)都是8,随便选一个,选c。
将a和b和c作为一个整体,与整体相连的有e、d、f,到整体最短的是f,选f。
将a和b和c和f作为一个整体,与整体相连的有e、d、g,到整体最短的是d,选d。
将a和b和c和f和d作为一个整体,与整体相连的有e、g,到整体最短的是g,选g。
将a和b和c和f和d和g最为一个整体,与整体相连的有e,选e。
复杂度分析:
从算法步骤可以看出复杂度是与V有关的,所以Prim更适合dense graph(E>>V)。
代码:https://github.com/Will-Zhu-27/Algorithms-and-Data-Structures/tree/master/graph/Minimum%20Spanning%20Tree/Prim
Kruskal:通过添加最短的且不构成回路的边完成MST
需要使用优先队列和Union-find 结构。
Union-find 结构:所有的顶都各自为一个集合,如果因为E[a][b](连接顶a和顶b)是mst中的话,则a和b所在的集合合并,可以以数组表示如下图。
也可以用树的形式表示,以树的形式表示的话,在进行union合并操作时,注意时将小的树并入大的树中。
步骤:
1.将所有边根据weight入列优先队列。将所有顶装入union-find结构。
2.从优先队列中取出一条边E[a][b](weight最小的)。
3.如果a和b在同一集合中,则步骤2。如果不再同一集合中,则a和b所在的集合合并,E是mst的一条边。
4.当mst边的数量< V - 1,步骤2。
若手工计算,以下图为例:
E[a][b](或者是E[c][e],只要不构成回路,选哪个都行)为mst中的边。
E[c][e]为mst中的边。
E[b][c]为mst中的边。
E[c][f]为mst中的边。
E[g][f]为mst中的边。
E[d][f]为mst中的边,不能是E[c][g]或E[a][e]会构成回路。
已经过所有的顶,mst完成。
代码:https://github.com/Will-Zhu-27/Algorithms-and-Data-Structures/tree/master/graph/Minimum%20Spanning%20Tree/Kruskal