[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.6

$f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}. \eex$$

 

证明: 由换元法及积分第二中值定理, $$\beex \bea \int_a^b \cos f(x)\rd x &=\int_{f(a)}^{f(b)} \frac{\cos y\rd y}{f'(f^{-1}(y))}\\ &=\frac{1}{f'(a)}\int_{f(a)}^\xi\cos y\rd y +\frac{1}{f'(b)}\int_\xi^{f(b)}\cos y\rd y\\ &=\frac{\sin\xi -\sin f(a)}{f'(a)} +\frac{\sin f(b)-\sin \xi}{f'(b)}\\ &\equiv I_1+I_2. \eea \eeex$$ 若 $I_1\cdot I_2\geq 0$, 则 $$\bex \sev{\int_a^b \cos f(x)\rd x} \leq \frac{\sev{\sin f(a)-\sin f(b)}}{f'(b)} \leq\frac{2}{m}; \eex$$ 若 $I_1\cdot I_2<0$, 则 $$\bex \sev{\int_a^b \cos f(x)\rd x} \leq \max\sed{\frac{\sev{\sin \xi-\sin f(a)}}{f'(a)},\frac{\sev{\sin f(b)-\sin \xi}}{f'(b)}} \leq\frac{2}{m}. \eex$$

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值