计算机图像处理数据 流行病学,流行病学与计算机应用

流行病学与计算机应用

语音

编辑

锁定

上传视频

《流行病学与计算机应用》是2011年复旦大学出版社出版的图书,作者是俞顺章、姜庆五。本书可以用作研究生教材,亦可供专业人士参考。

书    名

流行病学与计算机应用

作    者

俞顺章

姜庆五编著

ISBN

9787309065237

类    别

页    数

400定    价

70

出版社

复旦大学出版社

出版时间

2011-04-01

装    帧

平装

开    本

16开

版    次

1

印    次

1

流行病学与计算机应用内容简介

编辑

语音

系统地介绍了国内外流行病学与计算机应用领域的发展动态,尤其是在疾病控制中的应用进展[1]

。全书分为三篇,共二十三章,主要内容包括:流行病学数据和常用统计方法,流行病学研究方法与调查设计,数学、数理模型在流行病学中的应用举例,疾病地理信息系统,样本大小及抽样方法,多变量分析在流行病学上的应用等。本书内容新颖,方法全面,应用方便,实践和理论并重,近况与远景共存。

俞顺章,姜庆五主编的这本《流行病学与计算机应用》一书系统地介 绍了国内外流行病学与计算机应用领域的发展动态,尤其是在疾病控制中 的应用进展。书中包括3大篇:

第一篇总论中除概述计算机在流行病学上的 应用外,还包括疾病数据管理、统计分析、图形处理、数学模型等内容;

第二篇实践中介绍了流行病学调查中经常遇到的样本大小、生存分析、多变量分析、决策分析等;

第三篇程序中介绍了流行病学和疾病控制中常用 软件等。

本书重点介绍了流行病学工作者应用较多的软件Epi Info和Epi Data;还着重列举了流行病学常用分析程序CP Epi,SAS,logistic回归分 析,生存分析,分子遗传流行病学等程序。书后光盘附有常用的流行病学 软件程序,以便使用。

《流行病学与计算机应用》的特点:内容新颖,方法全面,应用方便 ,实践和理论并重,近况与远景共存。大部分资料来自复旦大学公共卫生 学院流行病学教研组在科研和教学中常年的积累、总结和实践;一部分来 自国际合作和应用;还有一部分由我院在约翰·霍普金斯大学、费城大学 等的博士和兄弟单位的教授共同参与编写。

流行病学与计算机应用目录

编辑

语音

流行病学与计算机应用第一篇 总论

第一章 计算机在流行病学中的应用

第一节 数据处理

第二节 统计处理

第三节 图形处理

第四节 数学模拟和数理模型

第六节 记录联动系统的应用

第七节 其他方面应用情况和前景

第二章 流行病学数据和常用统计方法

第一节 算术均数、调和均数和几何均数

第二节 几何均数在血清流行病学上的应用

第三节 中位数

第四节 数据分布的研究

第五节 控制图在流行病学上的应用

第六节 发病(死亡)率数据的年龄标化

第三章 流行病学研究方法与调查设计

第一节 流行病学的研究方法

第二节 流行病学的病因调查及其调查设计类型

第三节 流行病学常用试验设计和处理分类的综合图示

第四节 队列和现况调查

第五节 病例对照调查分析方法

第六节 干预研究

第四章 趋势检验、归因危险度及可预防比

第一节 趋势检验在流行病学中的应用

第二节 率差与归因危险度

第三节 可预防比

第五章 图形处理

第一节 数据类型和文件结构与图形类别

第二节 应用SPSS生成流行病学统计图

第三节 应用Excel生成流行病学统计图

第四节 其他软件生成流行病学统计图

第五节 图形所需数据实例 结语

第六章 数学、数理模型在流行病学中的应用举例

第一节 传染病数学模型

第二节 肝癌年龄别曲线拟合

第三节 APC年龄时期队列模型

第四节 筛检时确定子宫颈癌高危人群和吸烟人群的数理模型

第五节 计算机在子宫颈癌细胞图像分析中的应用

第六节 广义线性模型及相对危险度模型

第七节 广义线性混合模型

第七章 疾病地理信息系统

第一节 地理信息系统基础

第二节 地理信息系统软件MapInfo简介

第三节 MapInfo的应用

第四节 应用实例

第八章 疾病负担的测量指标——DALY

第一节 基本概念

第二节 DALY的构成

第三节 健康生命年的时间相对值

第四节 DALY的应用

第五节 DALY的计算程序

第九章 人工神经网络在医学中的应用

第二节 人工神经网络

第三节 BP人工神经网络的原理

第四节 BP网络算法的改进

第五节 BP网络的设计考虑

第六节 BP人工神经网络的应用

第十章 计算机在营养流行病学上的应用

第一节 营养流行病学简介

第二节 膳食测量方法

第三节 膳食分析方法

第四节 膳食营养成分SAS计算程序

第五节 营养素计算系统软件

第十一章 分子遗传流行病学研究方法简介

第一节 Hardy Weinsberg平衡定律

第二节 关联分析

第三节 分离分析

第四节 遗传度计算

流行病学与计算机应用第二篇 实践

第十二章 样本大小及抽样方法

第一节 利用CPEPI程序计算样本大小

第二节 批量质量保证抽样法在疫苗接种率判定时的应用

第三节 代入公式计算样本大小

第四节 基因研究时样本大小

第五节 复杂抽样方法

第十三章 生存分析

第一节 生存分析的概念

第二节 生存分析的资料结构

第三节 生存分布的模型

第四节 生存分析的方法

第五节 SAS程序在生存分析中的一些具体应用

第六节 相对生存率的计算及应用

第十四章 多变量分析在流行病学上的应用

第一节 多变量分析常见问题——混杂、交互、机遇、偏倚

第二节 回归分析

第三节 判别函数

第四节 趋势面分析

第五节 多变量分层分析法与逐步回归法

第六节 主成分分析 第七节 聚类分析

第十五章 流行病学决策分析

第一节 进行决策所需的资料和方法

第二节 用决策树的方法来进行决策分析

第三节 费用效益分析

第四节 卫生评估

第五节 循证医学在决策上的应用

第十六章 Meta分析在流行病学上的应用

第一节 Meta分析的历史

第二节 文献的收集和质量评估

第三节 Meta分析的固定效应模式

第四节 随机效应模式

第五节 Meta分析的计算和程序介绍

第六节 Meta分析今后发展

流行病学与计算机应用第三篇 程序

第十七章 CPEPI和PEPI流行病学统计处理软件

第一节 流行病学统计计算程序集的发展

第二节 CPEPI和PEPI流行病学统计程序

第三节 CPEPI程序示范

第四节 结语

第十八章 GLIM广义线性模型软件

第一节 前言

第二节 数据的计算、整理与显示

第三节 广义线性模型基础

第四节 应用

第十九章 流行病学资料分析中常用的SAS过程

第一节 四格表资料的χ2和相对危险度(OR或RR)估计方法

第二节 四格表资料的一致性分析方法(Kappa及其95%可信限)

第三节 分层资料χ2和相对危险度(OR或RR)的估计方法

第五节 1∶1配对资料的logistic回归分析

第六节 1∶n和m∶n配比资料的条件logistic回归分析

第七节 Cox模型分析

第八节 GEE模型分析

第九节 本章应用的SAS过程简介

第一节 基本原理

第二节 二进制数据logistic回归模型的拟合

第三节 以糖尿病为例进行logistic回归计算

第四节 计算预测概率及其应用

第五节 用logistic回归进行ROC曲线分析

第六节 用不同方法进行logistic回归模型拟合

第二十一章 Epi Info 2000使用简介

第一节 概述

第二节 Epi Info 2000的新功能

第三节 Epi Info 2000中各程序简介

第二十二章 Epi Data软件应用介绍

第一节 建立调查表文件

第二节 Epi Data中变量名称的形成与编辑

第三节 数据文件的创建和维护

第四节 数据双输入和核对

第五节 数据的输出

第六节 Epi Data和Epi Info的兼容性

第二十三章 遗传流行病学分析方法与SAS Genetics模块

第一节 Hardy Weinberg平衡检验

第二节 连锁不平衡分析

第三节 显性模型与隐性模型、相乘模型与相加模型

第四节 单体型分析

第五节 传递不平衡检验

词条图册

更多图册

参考资料

1.

流行病学与计算机应用

.豆瓣[引用日期2017-06-15]

年龄-时期-队列模型(Age-period-cohort model, 简称APC模型)是一种统计分析工具,常用于研究随时间变化的社会现象,并区分出年龄效应、时期效应以及世代效应对这一现象的影响。该模型通常应用流行病学、人口统计学和社会科学等领域。 在R语言中实现年龄-时期-队列模型需要一些特定的数据结构和函数帮助我们估计模型参数。一般来说,我们需要准备三个关键数据集: 1. **年龄**:个体在其生命历程中的年龄。 2. **时期**:调查或观察的时间点,在历史背景下理解趋势的变化。 3. **队列**:共享共同出生年代的一群人,他们的经历受到同一代背景的影响。 R语言中有多种包可以帮助构建和估计年龄-时期-队列模型。其中比较常用的是 `lm` 函数来进行线性回归分析的基础操作,但由于 APC 模型的特殊性质,更推荐使用专门针对此模型设计的包,如 `apc` 或 `ape` 包等。 以下是使用 R 语言基本框架实现 APC 模型的一个简单步骤示例: ```r # 首先安装并加载必要的包 install.packages("apc") library(apc) # 假设有一个包含年龄、时期、队列和对应数值数据的示例数据集 "mydata" # mydata <- read.csv("path_to_your_data.csv") # 使用 apc() 函数拟合模型 # 我们将使用 age 和 period 作为自变量,response 变量是我们想要预测的数据 model <- apc(response ~ age + period - 1, data = mydata) # 打印模型结果 print(model) ``` 请注意,这只是一个基础的示范流程。实际应用中,您可能需要考虑模型假设检验、模型诊断、参数解释等问题。此外,数据预处理(例如缺失值处理、数据转换等)、模型选择(如尝试不同的模型结构以评估最优配置)也是非常重要的部分。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值