一种确定某类工作的人的极限工作时间的方法
【技术领域】
[0001] 本发明涉及安全人机工程领域,特别是涉及确定某类工作的人的极限工作时间。
【背景技术】
[0002] 我国是一个劳动力大国,在高度机械化和自动化的今天,仍有大量的劳动者从事 着以人为主要动力来源的劳动。人与机器相比有着丰富的创造能力,但同时人在长时间的 劳动过程中会在生理和心里方面产生疲劳。在疲劳状态下工作的操作人员,心情烦躁,注 意力难以集中,不但工作效率低下,而且会生产较多的残次品,这样更会加重操作人员的心 里压力,使人的行为更加不可靠,甚至会由于操作不当造成人身伤亡。所以,确定一个适当 的工作时间,不仅能提高操作者的效率,而且能提高产品的合格率,这样一方面保护了劳动 者,另一方面也增加了企业的经济效益。换句话说,就是在保证操作人员操作可靠性不小于 某个特定值的前提下,确定操作者可以工作的最长时间,即极限工作时间(LWT)。
[0003] 关于人的可靠性及适合的工作时间的研宄,目前有柴松等的基于CREAM和不确定 推理的人因可靠性分析方法和海洋工程人因可靠性定量分析方法与应用;董学军等的基于 补偿和不可替代因素合成的人因可靠性分析方法;蒋建军等的基于隐马尔可夫的核电厂半 数字化人-机界面事故诊断过程人因可靠性模型和考虑人因的核电厂主控室认知可靠性 模型研宄;倪蓉的煤矿职工疲劳度相关因素分析与控制研宄。
【发明内容】
[0004] 本发明提出了基于SPCC和ARIMA的人的LWT的确定方法。该方法主要分为两部 分,一部分是构造SPCC并得到LCL、UCL、CL和极限时间范围,这部分的数据来源是多个样本 (操作者)的统计数据;另一部分使用ARIMA,配合SVM和RTA预测某一个新样本在工作时 间不足的情况下后继时间序列的变化,进而形成该新样本的DRTS,结合得到的SPCC可预测 该样本的LWT。
[0005] 先给出用到的相关缩写的概念:SPCC:统计过程控制图(Statisticalprocess controlchart,简记SPCC);ARIMA:差分自回归移动平均模型(Autoregressive IntegratedMovingAverageModel,简记ARIMA) ;LCL:下控制线(lowcontrolline, 简记LCL) ;UCL:上控制线(upcontrolline,简记UCL) ;CL:中心线(centerline,简 记CL) ;LWT:极限工作时间(limitWorkingtime,简记LWT) ;SVM:支持向量机(Support VectorMachine,简记SVM);RTA:实时跟踪算法(RealtimeTracingAlgorithm,简 记RTA) ;DRTS:次品率时序序列(Defectiveratetimeseries,简记DRTS) ;ACF:自 相关函数(autocorrelationcoefficientfunction,简记ACF);ACP:自相关系数 (autocorrelationcoefficientparameter,简记ACF) ;PACF:偏自相关函数(partial autocorrelationcoefficientfunction,简记PACF) ;PACP:偏自相关系数(partial autocorrelationcoefficientparameter,简记PACP);AIC:最小艾卡信息量准则 (lowestAkaikeinformationcriterion,简记AIC) ;SSPCC:休哈特统计控制过程图 (Shewhartstatisticalprocesscontrolchart,简记SSPCC) 〇
[0006] -种确定某类工作的人的极限工作时间的方法,其特征在于,为了 了解在保证可 靠性的前提下,操作者最长可持续的工作时间,即极限工作时间LWT提出了一种结合SPCC 和ARIMA的方法来进行确定,用连续时间中单位时间间隔内的次品率衡量人的可靠度,并 形成次品率时序序列DRTS;其包括如下步骤:一方面使用该数列基于ARIMA构建SPCC,并 确定样本的UCL、LCL和极限时间范围;另一方面使用ARIMA和SVM配合RTA对需要确定LWT 的某一操作者的DRTS进行预测;最后将预测曲线置于SPCC中来确定该操作者LWT的范围; 本发明可用于确定某类工作的人的极限工作时间。
[0007] 该方法涉及到的相关知识有SPCC、ARIMA,SVM和RTA。算法的作用有两个,一个是 通过统计多个样本(操作者)确定某种操作的泛化的LCL、UCL、CL和LWT;另一个是基于这 些统计结果预测某个个体(操作者)的LWT。下面介绍一下他们在算法中的作用。SPCC可 以对多个样本统计数据进行整理,得到数据的LCL、UCL、CL和LWT,这样可以得到数据变化 趋势是否将超限,从而可根据统计数据的特征预测同类型数据是否有超限的可能,形成的 SPCC图是整个方法的标尺。ARIMA是算法的核心,这里的SPCC处理的是时间序列,ARIMA 在形成SPCC时适用于形成无相关性的时间序列数据。为了预测新操作者的LWT,需要对短 时间内的新操作者的DRTS进行分析,并对未来的序列数据进行预测。但DRTS很可能是线 性和非线性的序列数据叠加的,可将线性数据使用ARIMA进行预测,非线性数据使用SVM预 测。使用RTA对时序数据进行跟踪,以保证预测的精确性。经过上面处理的线性和非线性 时序数据相叠加形成最终的该操作者的DRTS数据,放入SPCC图中,即可确定他的LWT。算 法的流程图如图1所示。
[0008] 从图1可以看出,算法可分为左右两部分用粗虚线分开。左边为时序数据的预测 部分,右面为SPCC图构造部分。图中最右边的ARIMA处理模块包括了三个部分,因为左右 两部分都要用到所以独立开来。右面主要任务是形成SPCC图,他是来源于多个样本的统计 结果,是整个算法的基础,有了SPCC图才能得到LCL、UCL、CL和LWT,才能处理单个样本的 LWT预测。左面的任务是预测单个样本DRTS数据,然后在SPCC中与LCL和UCL比较,最终 确定LWT。下面介绍图1中每个模块的具体实现、注意事项和相关解释。
[0009]SPCC是被用作对实时数据的监控和预测的。论文构造的基于时间序列的SPCC是 基于ARIMA的,他与传统的SPCC是不同的。SPCC的构造过程分3步:1)相关性评价;2) ARIMA构建;3)控制图构建。ACF在第一步中,用来评价时间序列的自相关性。如果不相关 直接执行第三步,用原始时间序列构建控制图。否则用ARIMA消除相关性,在第二步产生时 间序列的非相关残差。然后用时间序列残差构建控制图在第三步。
[0010] 使用ACF估计相关性,ACF图显示了对应时间点的相关性。设滞后时间间隔为k, 使用MATLAB中的autocorr计算相关性。如果ACF图显示的数值的绝对值总体趋势减小, 那么可以断定时间序列是相关。
[0011] 如果数据是相关的,那么使用ARIMA消除来消除相关性。ARIMA模型可表示为 ARIMA(p,d,q),其中p,d,q为大于等于0的整数,p为自回归项;d为时间序列成为平稳时所 做的差分次数;q为移动平均项数。给定ARIMA(p,d,q),原时间序列xt可被拟合并转化为 一个白噪声过程et,他们之间的关系如式⑴所示。
[0012]
[0013] 式中:\和巾5自回归系数和移动平均系数,B延迟算子,Bxt_j,j为延迟次 数。
[0014] ARIMA的构建分三个步骤,即识别规则,参数估计和模型检验。识别规则是通过计 算能够描述序列特征的一些统计量,如自相关(ACP)系数和偏自相关(PACP)系数来确定 ARMA(p,d,q)模型的阶数p和q,并根据一定的准则,如AIC准则等综合确定模型的参数。参 数估计是估计模型的未知参数,并通过参数的统计量检验其显著性,以及模型的合理性。模 型检验是检验模型的拟合值和实际值的残差序列是否为一个白噪声序列。
[0015] 在识别规则中,使用逐次差分将时间序列转化为稳定数据,一次和二次差分公式 分别如式(2),(3)所示。
[0016] (1_B)xt=x「Xh(2)
[0017] (1-B)2xt= (1-2B+B2)xt=xt-2xt_1+xt_2 (3)
[0018] ACF和PACF可绘制出各种差分时间序列的对应曲线。在其他参数不变的条件下, 差分次数d的变化对ACF和PACF形成的图形影响较小。具体来说,ACF图像拖尾和PACF延迟P后截尾时应使用ARIMA(p,d,0);ACF延迟p截尾和PACF拖尾时应该使用ARIMA(0,d,q); ACF和PACF都拖尾那么应该使用ARIMA(p,d,q)。如果确定了为ARIMA(p,d,q),那么可以使 用八尺1嫩(1,(1,1)、八1?1嫩(1,(1,2)、八1?1嫩(2,(1,1)和六1?1嫩(2,(1,2)来进行适应性检验。 [0019] 使用最大相似估计法来估计ARIMA的参数。即使用最大化条件对数似然函数 (.61,,. )进行估计,如式⑷所示。
[0020]
(4)
[0021] 式中是%的方差;S#((i)p,0q)通过式(5)进行估计。
[0022]
(5)
[0023] 如果,ARIMA(p,d,q)中p辛0,q辛0,最好的方法是通过AIC进行定阶,可以有效 地克服模型的过度敏感问题,提高模型的稳健性,其具体表达式如式(6)所示。
[0024]
(6)
[0025] 式中: 是et的方差的估计值,N为样本数。
[0026] 模型检验是确定是否原时间序列的相关性已被消除。使用ACF对白噪声et进行 分析可进行验证。当延迟j大于10,且ACF的分析结果趋近于0时可认为相关性已被消除。 否则重复进行ARIMA处理,直到满足上述条件。
[0027] 利用RTA算法对ARIMA模型的改进。为了充分利用最新的监测信息,提高预测精 度,本文在ARIMA的模型基础上提出与实时跟踪算法RTA结合的改进模型。假设要对时间 序列h|i=1:t}进行预测,假设步长为m,利用h|i=1:t}预测h|i=t+1:t+m},去 掉{x」i=l:t+m}的前m个数据,开多成{x」i=m+l:t+m}进行下一步的时序数列预测。
[0028] 多数情况下,时序序列具有复杂的线性和非线性特征。ARIMA和SVM模型分别在处 理线性和非线性数据结构的预测问题时有着各自的优势,与此同时,两者都存在着自身的 缺陷,不能适应所有的数据结构。可将ARIMA和SVM结合使用,以求达到增强预测模型对数 据样本的适应能力,从而提高预测的效果。
[0029]使用已有的时序数据构建SSPCC,基于Shewhartthreesigmacontroltheory来 确定中心线CL。历史数据可以是无相关性的原时间序列\或ARIMA处理后的白噪声过程 et。Qi为在时间点i处的历史数据。控制上线UCL、控制下线LCL和中心线CL如式(7)所 不〇
[0030]
(7) T
[0031] 式中7T为时间序列长度的平均值。w/7表示平均移动范围, X=--, T
中mri: a厂a卜1〇
[0032] 在SSPCC中是使用时间序列中两个连续值作为移动范围的,所以n= 2,d2 = 1. 128〇
【附图说明】
[0