数据结构与算法 2.7
习题2.7
假设需要生成前N个自然数的一个随机置换。例如,{3,4,1,5,2}和{5,2,3,1,4}就是合法的置换,但{5,4,1,2,1}却不是,因为数1出现了两次而数3却没有。 这个程序常用语模拟一些算法。我们假设存在一个随机数生成器RandInt(i,j),它以相同的概率生成i和j之间的一个整数。下面是三个算法:
- 如下填入从A[0]到A[N-1]的数组A;为了填入A[i],生成随机数直到它不同于生成的A[0],A[1]......A[i-1]时,在填入A[i]
- 同算法(1),但是要保存一个附加数组,称之为Used(用过的)数组。当一个随机数Ran最初被放入数组A的时候,置Used[Ran]=1。这就是说,当一个随机数填入A[i]时可以进一步测试是否该随机数已经被使用,而不是像第一个算法那样(可能)进行i步测试。
- 填写该数组使得A[i]=i+1。然后:
for (i = 1; i < N; i++) { Swap(&A[i], &A[RandInt(0, i)]); }
- a. 证明这三个算法都生成合法的置换,并且所有的置换都是等可能的。
- b. 对每一个算法给出你能够得到的尽可能准确的期望的运行时间分析。
- c. 分别写出程序来执行每个算法10次,得出一个好的平均值。对于N=250, 500, 1000, 2000运行程序1;对于N=2500,5000,10000,20000,40000,80000运行程序2;对N=10000,20000,40000,80000,160000,320000,640000运行程序3。
- d. 将实际的运行时间与你的分析时间进行比较
- e. 每个算法的最坏情形的运行时间是什么?
参考资料
头文件
// 随机置换方法一
extern void RandRangOne(int[], int);
// 随机置换方法二
extern void RandRangTwo(int[], int);
源文件
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
/**
* 产生[min, max]之间的一个随机数
* 注:参考PHP随机数生成的处理
* @param min
* @param max
* @return
*/
int RandInt(int min, int max) {
srand((unsigned int)(time(0) * getpid()) ^ (unsigned int)(1000000.0));
return min + (int)((double)((double)(max) - (min) + 1.0) * ((rand()) / ((RAND_MAX) + 1.0)));
}
/**
* 随机置换算法一
* @param a
* @param size
*/
void RandRangOne(int a[], int size) {
int i;
for (i = 0; i < size; i++) {
while (1) {
int rand = RandInt(1, size);
int flag = 0;
int j;
for (j = 0; j < i; j++) {
if (a[j] == rand) {
flag = 1;
break;
}
}
if (flag) {
continue;
}
a[i] = rand;
break;
}
}
}
/**
* 随机置换算法二
* @param a
* @param size
*/
void RandRangTwo(int a[], int size) {
int used[size], i;
for (i = 0; i < size; i++) {
while (1) {
int rand = RandInt(1, size);
if (used[rand] == 1) {
continue;
}
a[i] = rand;
used[rand] = 1;
break;
}
}
}
调用示例
#include <stdio.h>
#include <stdlib.h>
#include "ext/s8/fun.h"
int main(int argc, char** argv) {
int a[10];
RandRangTwo(a, 10);
int i;
for(i = 0; i < 10; i++) {
printf("%d\n", a[i]);
}
return (EXIT_SUCCESS);
}