CCF NOI1185

题目描述
把正整数N分解成M个正整数的和,即使M个数相同但顺序不同也认为是不同的方案,要求总方案数。如3=1+2跟3=2+1是两个不同的方案。
输入
第一行包含两个整数N和M(1<=M<=N<=50)。
输出
输出一个数表示方案数。
样例输入
3 2
样例输出
2
数据范围限制
1<=M<=N<=50

 

分析:用递归做TLE,用动态规划做,dp[i][j]表示

把整数i划分为j个数的方案数,则dp[i][j]=∑dp[k][j-1],0<k<i,

记得初始化。

#include<cstdio>
long long dp[60][70];
int main()
{
    int N,M,ans;
    scanf("%d%d",&N,&M);
    for(int i=1;i<=N;i++) dp[i][1]=1;//初始化
    for(int i=2;i<=N;i++)
    {
        for(int j=1;j<=M;j++)
        for(int k=1;k<i;k++)
        dp[i][j]+=dp[k][j-1];
    }
    printf("%lld\n",dp[N][M]);
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/ACRykl/p/8335122.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值