选择 reducer 的个数

默认情况下,一个 mapreduce job 只有一个 reducer ,真实应用中,作业都把它设置成一个较大的数字,否则由于所有的中间数据都会放到一个 reducer 任务中,造成性能瓶颈。

reducer 最优个数与集群中可用的 reducer 任务槽数相关。总槽数由集群中节点数与每个节点的任务数相乘得到。每个节点的任务槽数由 mapred.tasktracker.reduce.tasks.maximum 属性的值决定,默认为 2 。

常用的方法是设置的 reducer 数比总槽数稍微少一些,给 reducer 任务留点余地,容忍一些错误发生而不需要延长作业运行时间。

hadoop 文档中推荐的两个公式计算 reducer 任务数的公式:
0.95 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum
1.75 * NUMBER_OF_NODES * mapred.tasktracker.reduce.tasks.maximum
备注:NUMBER_OF_NODES 是集群中的计算节点个数

在代码中通过 JobConf. setNumReduceTasks(int numOfReduceTasks) 函数设置 reducer 的个数

转载于:https://my.oschina.net/zc741520/blog/374182

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值