题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1925
题意:求1到n个所有排列中有多少种满足高低交错。
思路:f[n][k]表示n个数,最后一个为k且最后两个递增,g[n][k]表示n个数最后一个数为k且最后两个递减。对于f[n][k],若我们将每个数x换为n+1-x,则就成了g[n][n+1-k],因此有:f[n][k]=g[n][n+1-k]。那么可得:
由于对称性,我们计算出:
那么最后的答案就是2ans。
i64 f[2][N];
int n,p;
i64 cal()
{
if(n==1) return 1%p;
if(n==2) return 2%p;
f[0][1]=0; f[0][2]=1;
int pre=0,cur=1,i,j;
for(i=3;i<=n;i++)
{
for(j=1;j<=i;j++)
{
f[cur][j]=f[pre][i-j+1]+f[cur][j-1];
f[cur][j]%=p;
}
swap(cur,pre);
}
i64 ans=0;
FOR1(i,n) ans=(ans+f[pre][i])%p;
return ans*2%p;
}
int main()
{
RD(n,p);
PR(cal());
}