BZOJ 1925 地精部落(DP)

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1925

题意:求1到n个所有排列中有多少种满足高低交错。

思路:f[n][k]表示n个数,最后一个为k且最后两个递增,g[n][k]表示n个数最后一个数为k且最后两个递减。对于f[n][k],若我们将每个数x换为n+1-x,则就成了g[n][n+1-k],因此有:f[n][k]=g[n][n+1-k]。那么可得:


由于对称性,我们计算出:


那么最后的答案就是2ans。

 

i64 f[2][N];
int n,p;


i64 cal()
{
    if(n==1) return 1%p;
    if(n==2) return 2%p;
    f[0][1]=0; f[0][2]=1;
    int pre=0,cur=1,i,j;
    for(i=3;i<=n;i++)
    {
        for(j=1;j<=i;j++) 
        {
            f[cur][j]=f[pre][i-j+1]+f[cur][j-1];
            f[cur][j]%=p;
        }
        swap(cur,pre);
    } 
    i64 ans=0;
    FOR1(i,n) ans=(ans+f[pre][i])%p;
    return ans*2%p;
}


int main()
{
    RD(n,p);
    PR(cal());
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值