one-class logistic regression (OCLR)

ONE-CLASS DETECTION OF CELL STATES IN TUMOR SUBTYPES

Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation 

PanCanStem Web

 

However, the challenge is to find them within samples containing mixtures of cell types of unknown proportions.

需要从一堆混合有未知细胞的细胞群中鉴定出我们想要的细胞。

We demonstrate that one-class models are able to identify specific cell types in heterogeneous cell populations better than their binary predictor counterparts.

We derive one-class predictors for the major breast and bladder subtypes and reaffirm the connection between these two tissues.

In addition, we use a one-class predictor to quantitatively associate an embryonic stem cell signature with an aggressive breast cancer subtype that reveals shared stemness pathways potentially important for treatment.

 

The resulting machine learning task is to build a model that can correctly rank the background samples containing the stemness signal above those that do not.

The accuracy is evaluated via Area under the ROC curve (AUC), which can be interpreted as the probability that the predictor correctly ranks a mixture sample above a non-mixture sample.

 

问题:

1. 到底什么是one class?

2. 与其他算法相比,有什么优点?

3. 我能应用到我的分析当中吗?

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>