链接:https://vjudge.net/problem/HDU-3549
题意:
给定多张图,求从1到n的最大流
思路:
网络流最大流
增广路算法,具体看注释。
代码:
#include <iostream>
#include <memory.h>
#include <vector>
#include <map>
#include <algorithm>
#include <cstdio>
#include <math.h>
#include <queue>
#include <string>
using namespace std;
typedef long long LL;
const int MAXM = 1000 + 10;
const int MAXN = 20;
const int INF = 1e9 + 10;
int n, m;
struct Edge
{
int _from, _to, _cap, _flow;
Edge(int from, int to, int cap, int flow):_from(from), _to(to), _cap(cap), _flow(flow){};
};
vector<Edge> edges;//记录每条边
vector<int> G[MAXN];//记录图,每个节点的边
int a[MAXN], p[MAXN];
//a数组记录每次找增广路时候每个节点对应能加的流
//p数组记录流经的点对应的线路的编号
void Init()
{
edges.clear();
for (int i = 0;i < n;i++)
G[i].clear();
}
int Solve()
{
int flow = 0;//总流量
while (1)
{
memset(a, 0, sizeof(a));//每次找增广路初始化
queue<int> que;//每次bfs的队列
que.push(1);
a[1] = INF;
while (!que.empty())
{
int x = que.front();
que.pop();
for (int i = 0;i < G[x].size();i++)
{
Edge & e = edges[G[x][i]];
if (!a[e._to] && e._cap > e._flow)
{
//a为0表示没有流过这个点同时流量小于容量
p[e._to] = G[x][i];
a[e._to] = min(a[x], e._cap - e._flow);
//能流的流量是线路最大流量和上一个节点的值中的较小值
que.push(e._to);//新节点进队
}
}
if (a[n] > 0)//如果流到了终点,break
break;
}
if (a[n] == 0)//如果终点流不到,表示增广路找不到,
break;
for (int u = n;u != 1;u = edges[p[u]]._from)
{
edges[p[u]]._flow += a[n];
edges[p[u] ^ 1]._flow -= a[n];//表示与正向对应的反向的边
}
flow += a[n];
}
return flow;
}
int main()
{
int t;
int l, r, c, cnt = 0;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
Init();
for (int i = 1;i <= m;i++)
{
scanf("%d%d%d", &l, &r, &c);
edges.push_back(Edge(l, r, c, 0));
edges.push_back(Edge(r, l, 0, 0));//增加反向边 保证能找到最大流
G[l].push_back(edges.size() - 2);
G[r].push_back(edges.size() - 1);
}
cout << "Case " << ++cnt << ": ";
cout << Solve() << endl;
}
return 0;
}