ConcurrentHashMap使用了锁分段技术来提供更高的并发性和伸缩性。锁分段技术就是说容器里有多把锁,每一把锁用于锁容器其中一部分数据,当多线程访容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发效率。在CurrentHashMap中,首先将数据分成一段一段的存储,然后给每段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问。
可重入锁:可重入锁,也叫做递归锁,指的是同一线程外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响; 同一个线程再次进入同步代码的时候.可以使用自己已经获取到的锁,这就是可重入锁 ;在JAVA环境下 ReentrantLock 和synchronized 都是可重入锁。
ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment继承了ReentrantLock,是一种可重入锁。ReentrantLock在ConCurrentHashMap里扮演锁的角色,HashEntry则用于存储键值对数据。一个ConcurrentHashMap里包含一个Segment数组,Segment的结构和HashMap类似,是数据 + 链表的结构。每个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,每个Segment守护着一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须先获得它对应的Segment锁。
源码阅读:
一、初始化ConCurrentHashMap
ConcurrentHashMap初始化方法是通过initialCapacity,loadFactor,concurrencyLevel几个参数来初始化Segments数组,段偏移量segmentShift,段掩码segmentMask和每个Segment里的HashEntry数组。
1.初始化Segement数组。
if (concurrencyLevel > MAX_SEGMENTS)
concurrencyLevel = MAX_SEGMENTS;
// Find power-of-two sizes best matching arguments
int sshift = 0;
int ssize = 1;
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
segmentShift = 32 - sshift;
segmentMask = ssize - 1;
this.segments = Segment.newArray(ssize);
由上面的代码可知Segments数组的长度ssize是通过concurrencyLevel计算得出。但是为了能通过位与的哈希算法来定位Segments数组的索引,必须保证Segments数组的长度是2的N次方,所以必须计算出一个是大于或等于concurrencyLevel的最小2的N次方来作为Segments数组的长度。假如concurrencyLevel等于14,15或16,ssize都等于16,即容器里锁的个数也是16。注意:concurrencyLevel的最大大小是65536,意味着segments数组的长度最大为65536,对应的二进制是16位。
2.初始化segmentsShift和segmentMask。
这两个变量在定位segment时的哈希算法里需要使用,sshift等于ssize从1向左移动移位的次数,
while (ssize < concurrencyLevel) {
++sshift;
ssize <<= 1;
}
在默认情况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。
segmentShift用于定位参与Hash运算的位数,segmentShift等于32减sshift,所以等于28。
segmentShift = 32 - sshift;
这里之所以用32是因为ConcurrentHashMap里的hash()方法输出的最大数是32位的。
segmentMask是哈希运算的掩码,等于ssize-1,即15,掩码的二进制各个位的值都是1。因为ssize的最大长度是65536,所以segmentShift最大值是16,segmentMask最大值是65535,对应的二进制是16位,每个位都是1。
segmentMask = ssize - 1;
3.初始化每个Segment。
输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负载因子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。
if (initialCapacity > MAXIMUM_CAPACITY){
initialCapacity = MAXIMUM_CAPACITY;
}
int c = initialCapacity / ssize;
if (c * ssize < initialCapacity){
++c;
}
int cap = 1;
while (cap < c){
cap <<= 1;
}
for (int i = 0; i < this.segments.length; ++i){
this.segments[i] = new Segment<K,V>(cap, loadFactor);
}
上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,如果c大于1,就会取大于等于c的2的N次方值,所以cap不是1就是2的N次方。
segment的容量threshold = (int)cap * loadFactor,默认情况下initialCapacity等于16,loadFactor等于0.75,通过运算cap等于1,threshold等于零。
二、定位Segment
既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素的时候,必须先通过哈希算法定位到Segment。可以看到ConcurrentHashMap会首先使用hash 的变种算法对元素的hashcode进行一次再哈希。
private static int hash(int h) {
h += (h << 15) ^ 0xffffcd7d; h ^= (h >>> 10);
h += (h << 3); h ^= (h >>> 6);
h += (h << 2) + (h << 14); return h ^ (h >>> 16);
}
再哈希,目的是为了减少哈希冲突,使元素能够均匀地分布在不同的Segment上,从而提高容器的存取效率。假如哈希的质量差到极点,那么所有元素都在同一个Segment中,不仅存取元素缓慢,分段锁也会失去意义。
/*默认情况下segmentShift为28,segmentMask为15,再哈希后的数最大是32位二进制数据,向右无符号移动28位,意思是让高4位参与到hash运算中,(hash>>>segmentShift) & segmentMask的运算结果分别是4,15,7和8,可以看到hash值没有发生冲突。*/
final Segment<K,V> segmentFor(int hash){
return segments[(hash>>>segmentShift)&segmentMask];
}
三、ConcurrentHashMap的get操作
Segment的get操作实现非常简单和高效。先经过一次再哈希,然后使用这个哈希值通过哈希运算定位到segment,再通过哈希算法定位到元素。
public V get(Object key) {
int hash = hash(key.hashCode());
return segmentFor(hash).get(key, hash);
}
get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空的才会加锁重读,我们知道Hash Table容器的get方法需要加锁的,那么ConcurrentHashMap的get操作是如何做到不加锁的呢?原因是它的get方法里将要使用的共享变量都定义成volatile,如用于统计当前Segment大小的count字段和用于存储值的HashEntry的value。定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖于原值),在get操作里只需要读不需要写共享变量count和value,所以可以不用加锁。之所以不会读到过期的值没事根据Java内存模型的happen before原则,对volatile字段的写入操作先于读操作,即使两个线程同时修改和获取volatile变量,get操作也能拿到最新的值,这是用volatile替换锁的经典应用场景。
transient volatile int count;
volatile V value;
在定位元素的代码里我们可以发现定位HashEntry和定位Segment的哈希算法虽然一样,都与数组的长度减去1相与,但是相与的值不一样,定位Segment使用的是元素的hashcode通过再哈希后得到的值的高位,而定位HashEntry直接使用的是再哈希后的值。其目的是避免两次哈希后的值一样,导致元素虽然在Segment里散列开了,但是却没有在HashEntry里散列开。
(hash >>> SegmentShift) & segmentMask ;//定位Segment所使用的hash算法
int index = hash & (tab.length - 1); //定位HashEntry所使用的hash算法
四、ConcurrentHashMap的put操作
由于put方法需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须得加锁。put方法首先定位到Segment,然后再segment里进行插入操作。插入操作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置然后放在HashEntry数组里。
是否需要扩容?在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈值,数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素的插入,这时HashMap就进行了一次无效的扩容。
如何扩容?扩容的时候会创建一个两倍于原容量的数组,然后将原数组的元素进行再hash后插入到新的数组里。为了高效ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。
五、ConcurrentHashMap的size操作
如果我们要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小后求和。Segment里的全局变量count是一个volatile变量,那么在多线程场景下,我们是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap的大小了呢?不是的,虽然相加时可以获取每个Segment的count的最新值,但是拿到之后可能累加前使用的count发生了变化,那么统计结果就不准了。所以最安全的做法,是在统计size的时候把所有Segment的 put,remove和clean方法全部锁住,但是这种做法显然非常低效。
因为在累加count操作过程中,之前累加过的count发生变化的几率非常小,所以 ConcurrentHashMap的做法是先尝试2次通过不锁住Segment的方法来统计各个Segment大小,如果统计的过程中,容器的count发生了变化,则再采用加锁的方式来统计所有的Segment的大小。
那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?使用modCount变量,在put,remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生了变化,从而得知容器里的大小是否发生变化。