咕咕咕
C:普及组难度的题
D:给定$a_{1\cdots n}$,求有多少$1\leq l\leq r\leq n$满足$x_l+\cdots+x_r=x_l\text^\cdots\text^x_r$
因为异或是不进位加法,所以枚举左端点暴力拓展右端点即可,一旦发生进位就break即可,对$0$要特殊处理
#include<stdio.h>
typedef long long ll;
int a[200010],len[200010];
int main(){
int n,i,j;
ll ans,x;
scanf("%d",&n);
for(i=1;i<=n;i++)scanf("%d",a+i);
for(i=n;i>0;i--){
if(a[i]==0)len[i]=len[i+1]+1;
}
ans=0;
for(i=1;i<=n;i++){
x=0;
for(j=i;j<=n;){
if(a[j]==0){
ans+=len[j];
j+=len[j];
}else{
if(x&a[j])break;
x^=a[j];
ans++;
j++;
}
}
}
printf("%lld",ans);
}
E:给定$a_{1\cdots n},k,q$,你要进行$q$次操作,每次操作可以选择一个长度为$k$的区间并删掉区间最小值,最小化删掉的数的极差
枚举删掉的最小值$x$,那么可以删掉的数必须处在连续$k$个$\geq x$的数中,对每个长度为$l(l\geq k)$的所有数都$\geq x$的极长区间排序后取前$l-k+1$小的数,最后把这些数选出来排序取第$q$小作为删除的最大值更新答案即可
#include<stdio.h>
#include<algorithm>
using namespace std;
const int inf=2147483647;
int a[2010],t[2010],al[2010],n,k,q;
int work(int x){
int i,j,s,M;
s=M=0;
for(i=1;i<=n+1;i++){
if(a[i]>=a[x]){
if(s==0)s=i;
}else if(s){
if(i-s>=k){
for(j=s;j<i;j++)t[j-s+1]=a[j];
sort(t+1,t+i-s+1);
for(j=1;j+k-1<=i-s;j++){
M++;
al[M]=t[j];
}
}
s=0;
}
}
if(M<q)return inf;
sort(al+1,al+M+1);
return al[q]-a[x];
}
int main(){
int i,ans;
scanf("%d%d%d",&n,&k,&q);
for(i=1;i<=n;i++)scanf("%d",a+i);
ans=inf;
for(i=1;i<=n;i++)ans=min(ans,work(i));
printf("%d",ans);
}
F:给定一个简单连通无向图,每个点有$a_i,b_i$,一个人可以带$w$的钱从任意$w\geq a_x$的$x$开始走,每走一条边要求目标节点$v$满足$w\geq a_v$,他也可以选择在$x$捐赠$b_i$,问捐赠完所有节点至少要多少钱
首先我们把$a_i$变成$\max(a_i-b_i,0)$并加一条限制:在$x$捐赠后也要满足$w\geq a_x$,容易看出这是不会改变答案的
存在一个最优解使得任意节点在被捐赠后不会再被经过,因为如果这样我们可以延迟捐赠,这并不会让答案变大
假设$x$有最大的$a_x$且删掉$x$后原图被分成许多连通块$G_{1\cdots k}$,那么存在这样一种最优解:先捐$G_{1\cdots i-1},G_{i+1\cdots k}$,再捐$x$,再进入$G_i$捐赠且以后都不再走出$G_i$
假如存在$w\in G_i$且先捐$w$后捐$x$,那么我们可以先不捐$w$而是在捐$x$后立刻走到$w$并捐$w$,因为$x$有最大的$a_x$,所以这总是能实现的,并且不会让答案变大
到这里思路就很清晰了,我们每次找出最大的$a_x$,把$x$作为根并递归进$G_{1\cdots k}$建出一棵树,在这棵树上的最优解就对应着原图的最优解
考虑DP,因为答案肯定$\geq\sum b_i$,不妨设$s_i=\sum\limits_{j\in\text{subtree}(i)}b_j$,$f_i$表示要比$s_i$多带多少钱,那么转移就是$f_x\mathop\longleftarrow\limits^\min\max(f_y,a_x-s_y)$
首先在$x$捐完除了$y$以外的所有子树后,带的钱肯定要$\geq a_x$
如果$f_y+s_y\gt a_x$,那么要带更多钱(这同时保证了即将从$x$到$y$的时候带的钱$\geq a_x$),也就是直接按$y$的限制,所以一开始要带$s_x+f_y$的钱,这样到$y$就有$s_y+f_y$的钱,而这也是捐完子树$y$的最小值
否则不需要考虑$y$的限制,因为剩下的钱肯定够了,所以要带$s_x+a_x-s_y$的钱,这样捐完$x$后刚好剩下$a_x$,是足够捐完子树$y$的
#include<stdio.h>
#include<algorithm>
using namespace std;
typedef long long ll;
struct node{
int x,v;
node(int a=0,int b=0){x=a;v=b;}
}p[100010];
int h[100010],nex[200010],to[200010],a[100010],b[100010],fa[100010],M;
ll s[100010],f[100010];
bool v[100010];
void add(int a,int b){
M++;
to[M]=b;
nex[M]=h[a];
h[a]=M;
}
bool operator<(node a,node b){return a.v<b.v;}
int get(int x){return x==fa[x]?x:(fa[x]=get(fa[x]));}
int main(){
int n,m,i,j,x,y;
scanf("%d%d",&n,&m);
for(i=1;i<=n;i++){
scanf("%d%d",a+i,b+i);
a[i]=max(a[i]-b[i],0);
p[i]=node(i,a[i]);
}
while(m--){
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
}
sort(p+1,p+n+1);
for(i=1;i<=n;i++){
fa[i]=i;
s[i]=b[i];
f[i]=a[i];
}
for(i=1;i<=n;i++){
v[p[i].x]=1;
for(j=h[p[i].x];j;j=nex[j]){
if(v[to[j]]){
x=get(p[i].x);
y=get(to[j]);
if(x==y)continue;
fa[y]=x;
s[x]+=s[y];
f[x]=min(f[x],max(f[y],a[x]-s[y]));
}
}
}
x=get(1);
printf("%lld",f[x]+s[x]);
}
咕咕咕