AGC003 补题小结

Problem A Wanna go back home

简要题意:给定一个由 \(N,S,W,E\) 构成的字符串,字母表示向东南西北走一步(任意长度),问能否回到原点 \(|S|\le 10^5\)

tag:小学生贪心

题解:南北和东西要么同时有,要么都没有

#include <cstdio>
#include <cstring>
char a[1005];bool N=0,S=0,W=0,E=0;
int main (){
    scanf ("%s",a+1);int n=strlen(a+1);
    for (int i=1;i<=n;i++) 
        if (a[i]=='N') N=1;
        else if (a[i]=='S') S=1;
        else if (a[i]=='W') W=1;
        else E=1;
    if ((N^S)||(W^E)) puts("No");
    else puts("Yes");
    return 0;
}
Problem B Simplified mahjong

简要题意:你有 \(a_i\) 个数字 \(i\) ,每次可以选两个差不超过 \(1\) 的数字配对,问最多配对对数。\(n\le 10^5,a_i\le 10^9\)

tag:贪心

题解:两两配对,类似桶排

#include <cstdio>
#define ll long long
inline int Min(int a,int b){
    return a<b?a:b;
}
ll ans=0;int a[100005];
int main() {
    int n;scanf ("%d",&n);
    for (int i=1;i<=n;i++) scanf ("%d",&a[i]);
    for (int i=1;i<=n;i++){
        if (a[i]&&a[i-1]) a[i]--,a[i-1]--,ans++;
        ans+=(a[i]>>1),a[i]&=1;
    }
    printf ("%lld",ans);
    return 0;
}
Problem C BBuBBBlesort!

简要题意:给定一个长度为 \(n\) 序列,支持两种操作

  1. 翻转任意长度为 \(3\) 的子段
  2. 翻转任意长度为 \(2\) 的子段

求给数列排序使用的最少的操作 \(2\) 的次数。\(n\le 10^5,a_i\le 10^9\)

tag:贪心,结论题

题解:有这样一个结论:如果 \(i\) 位置的元素距离其目标位置 \(a_i\) 的距离是奇数,则必须用一次 \(2\) 操作。设这样的元素个数是 \(k\) 个,答案就是 $\frac{k}{2} $。

证明:必要性:\(1\) 操作不能改变一个元素离它的目标位置的奇偶性。充分性:两个距离其目标位置是奇数的元素,用 \(2\) 操作一定可以把它们挪到一起,它们两个交换一下位置,一定可以用 \(2\) 操作移回自己的目标位置。

#include <map>
#include <cstdio>
using namespace std;
const int N=1e5+5;
map <int ,int > ma;
int a[N],b[N];
int main (){
    int n;scanf ("%d",&n);
    for (int i=1;i<=n;i++) scanf ("%d",&a[i]),b[i]=a[i];
    sort(b+1,b+n+1);for (int i=1;i<=n;i++) ma[b[i]]=i;
    int k=0;
    for (int i=1;i<=n;i++)
        if ((i-ma[a[i]])&1) k++;
    printf ("%d",(k>>1));
    return 0;
}
Problem D Anticube

简要题意:给定 \(n\) 个数 \(s_i\) ,要求从中选出最多的数并且任意两个数字的积不是完全立方数。 \(n\le 10^5,s_i\le 10^{10}\)

tag:Hash,质因数分解,补集转化

题解:可以分解到 \(a^{\frac{1}{3}}\) ,然后要么是某质数平方 \(p^2\) ,要么是大质数 \(p\) ,这样可以不用使用 \(Pollard-Rho\) 当然有兴趣写也行 ,考虑把每一个指数对 \(3\) 取模,如果两个数所有对应质因子指数之和都是3的倍数,那么它们不能划在同一个集合,这样补集转化一下,直接用map存下来就可以了。

#include <map>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
map <ll ,int > ma;
const int M=3005,N=100005;
int p[M],tot=0;bool notp[M];
ll a[N];ll c1[N],c2[N];
int cnt[N];
map <ll,bool > used;
inline void getp(){
    for (int i=2;i<=3000;i++){
        if (!notp[i]) p[++tot]=i;
        for (int j=1;i*p[j]<=3000&&j<=tot;j++){
            notp[i*p[j]]=true;
            if (i%p[j]==0) break;
        }
    }
}
int main (){
    int n;scanf ("%d",&n);
    getp();bool flag=false;
    for (int i=1;i<=n;i++) scanf ("%lld",&a[i]);
    for (int i=1;i<=n;i++){
        for (int j=1;j<=tot;j++) cnt[j]=0;
        ll hash=1,hash2=1;
        for (int j=1;j<=tot;j++)
            while (a[i]%p[j]==0) a[i]/=p[j],cnt[j]++;
        for (int j=1;j<=tot;j++) {
            cnt[j]%=3;
            for (int k=1;k<=cnt[j];k++) hash*=p[j];
            if (cnt[j]) for (int k=2;k>=cnt[j];k--) hash2*=p[j];
        }
        if (a[i]==1) c1[i]=hash,c2[i]=hash2;
        else {
            ll t=(ll)sqrt(a[i]);
            if (t*t==a[i]) hash*=t,hash*=t,hash2*=t;
            else hash*=a[i],hash2*=a[i],hash2*=a[i];
            c1[i]=hash,c2[i]=hash2;
        }
    }
    int ans=0;
    for (int i=1;i<=n;i++) ma[c1[i]]++;
    for (int i=1;i<=n;i++){
        ll x=c1[i],y=c2[i];
        if (used[x]||used[y]) continue;
        ll t=ma[x]>ma[y]?x:y;used[t]=1;
        ans+=(t==1)?1:ma[t];
    }
    printf ("%d",ans);
    return 0;
}
Problem E Sequential operations on Sequence

简要题意:一串数,初始为 \(1...N\) ,现在给 \(Q\) 个操作,每次操作把数组长度变为 \(q_i\) ,新增的数为上一个操作后的数组不停自身复制直到长度等于 \(q_i\) 。问 \(Q\) 次操作后 \(1-N\) 每个数出现了多少次。\(N,Q\le 10^5,q_i\le 10^{18}\)

tag:巧妙思维题,数据结构,单调栈,递归,差分

题解:数据结构题中很妙的一种,应该是我目前见过最妙的数据结构题之一了。

首先,如果满足 \(q_i\ge q_{i+1}\),那么 \(q_{i+1}\) 显然不会造成任何影响,所以维护一个单调栈,只留下有用的操作,即使得最后的操作序列单调递增

考虑一个计算第 \(i\) 次操作过程。前面的一大堆都是上一次操作所得答案的若干倍,所以对于一个操作,只要单独处理 \(q_i\ \%\ q_{i-1}\) 那一部分的答案就好了。至于前面那些没用的,就给第 \(i-1\) 个操作加上一个系数,到时候操作它的时候答案乘上这个系数即可。

那单独处理的这一部分,做法也是一样的。跳过前面比这一段长度更大的操作,找到第一个小于它长度的 \(q_t\) ,前面一大堆都是第 \(t\) 次操作的若干倍,所以直接给第 \(t\) 次操作加上一个系数,再处理 \((q_i\ \%\ q_{i-1}) \% q_t\) 即可。就这样不断递归下去,直到没有比它更小的了,此时直接给答案区间 \([1, len]\) 加上当前操作的系数即可(len表示当前区间长度)。区间加法可以用差分实现,最后还原即可。

那这个过程显然要倒着来做,否则你不知道当前操作的系数是多少。

至于复杂度,递归时每次长度模一个数,那层数显然不超过 \(log\) 层。因为要二分找上面说的那个 \(t\) ,所以复杂度是\(O(nlognlogq)\)。代码非常好写。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N=100005;
#define ll long long
ll a[N],f[N],d[N];int top=0;
inline void work(ll x,ll y){
    if (!x) return;
    int t=upper_bound(a+1,a+top+1,x)-a-1;
    if(!t) d[1]+=y,d[x+1]-=y;
    else f[t]+=x/a[t]*y,work(x%a[t],y);
}
int main (){
    int n,m;scanf ("%d%d",&n,&m);
    a[++top]=n;
    for (int i=1;i<=m;i++){
        ll x;scanf ("%lld",&x);
        while (x<=a[top]) --top;
        a[++top]=x;
    }
    f[top]=1;
    for (int i=top;i>=2;i--) f[i-1]+=a[i]/a[i-1]*f[i],work(a[i]%a[i-1],f[i]);
    d[1]+=f[1],d[a[1]+1]-=f[1];
    for (int i=1;i<=n;i++) d[i]+=d[i-1],printf ("%lld\n",d[i]);
    return 0;
}
Problem F Fraction of Fractal

简要题意:给定一个 \(H\times W\) 的黑白网格,保证黑格四连通且至少有一个黑格

定义分形如下:\(0\) 级分形是一个 \(1\times 1\) 的黑色单元格,\(k+1\) 级分形由 \(k\) 级分形得来。具体而言,\(k\) 级分形中每个黑色单元格将会被替换为初始给定的 \(H\times W\) 的黑白网格,每个白色单元格会被替换为 \(H\times W\) 的全白网格

\(k\) 级分形的四连通分量数,答案对 \(10^9+7\) 取模 \(k\le 10^{18},\ \ H,W\le 10^3\)

四连通分量就是连通块

tag:找规律,矩阵快速幂,思维题

题解:

首先如果这个图形与四周不连通,那么答案就一定是 \(cnt^{k-1}\) ,其中 \(cnt\) 为黑点个数。

如果这个图形上接下是联通的,左接右也是联通的,那么答案就一定是 \(1\),因为最后的分形一定联通。

那么剩下的情况就只有上边和下边联通,左边和右边联通两种情况之一了(其实旋转一下就是一种情况,这里只讨论行连通,列不连通的情况)。

那么我们就只需求出 \(x,y,z\),其中 \(x[k]\) 表示 \(k\) 级分形有多少个黑连通块,\(y[k]\) 表示 \(k\) 级分形有多少个黑块满足它同一行右边一个也是黑块。 \(z[k]\) 表示 \(k\) 级分形有多少行是首位连通的。

\(x[k]=x[k-1]^2,y[k]=x[k-1]y[k-1]+z[k-1]y[k-1],z[k]=z[k-1]^2\)

那么可以构造矩阵优化这个过程,\(\begin{bmatrix}x&y\\ 0 & z \end{bmatrix}\)

用快速幂求 \(A=\begin{bmatrix}x &y \\ 0 & z \end{bmatrix}^{k-1}\),答案就是 \(x-y\) (即为 \(A[1][1]-A[1][2]\) ) 。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define ll long long
const int N=4,Mod=1e9+7;
struct Mat{
    int a[N][N];
    inline void clear(){memset (a,0,sizeof(a));}
    inline Mat operator *(Mat t){
        Mat c;c.clear();
        for (int i=1;i<=2;i++)
            for (int j=1;j<=2;j++)
                for (int k=1;k<=2;k++){
                    c.a[i][j]+=1ll*a[i][k]*t.a[k][j]%Mod;
                    c.a[i][j]%=Mod;
                }
        return c;
    }
};
inline int qpow(int a,ll b){
    int ans=1;
    while (b){
        if (b&1) ans=1ll*ans*a%Mod;
        a=1ll*a*a%Mod,b>>=1;
    }
    return ans;
}
const int M=1005;
char s[M][M],ss[M][M];
int n,m;ll k;
inline void rev(){
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            ss[m-j+1][i]=s[i][j];
    swap(n,m);
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            s[i][j]=ss[i][j];
}
inline int query(){
    int cnt=0;
    for (int i=1;i<=n;i++)
        if (s[i][1]=='#'&&s[i][m]=='#') ++cnt;
    return cnt;
}
int main ()
    scanf ("%d%d%lld",&n,&m,&k);
    for (int i=1;i<=n;i++)
        scanf ("%s",s[i]+1);
    int x=0,y=0,z=0;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
            x+=(s[i][j]=='#');
    int f1=query(),cnt=0;
    rev();int f2=query();rev();
    if (f1&&f2) return puts("1"),0;
    else if (!f1&&!f2) return printf ("%d",qpow(x,k-1)),0;
    else if (f2) rev();
    for (int i=1;i<=n;i++)
        for (int j=1;j<m;j++)
            y+=(s[i][j]=='#'&&s[i][j+1]=='#');
    for (int i=1;i<=n;i++)
        z+=(s[i][1]=='#'&&s[i][m]=='#');
    Mat t;t.clear();
    t.a[1][1]=x,t.a[1][2]=y,t.a[2][2]=z;
    Mat ans;ans.clear();--k;ans.a[1][1]=ans.a[2][2]=1;
    while (k){
        if (k&1) ans=ans*t;
        t=t*t,k>>=1;
    }
    printf ("%d",(ans.a[1][1]-ans.a[1][2]+Mod)%Mod);
    return 0;
}

转载于:https://www.cnblogs.com/crazyzh/p/10883758.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值