图示全连接层
- 如上图所示,该全链接层输入n * 4,输出为n * 2,n为batch
- 该层有两个参数W和B,W为系数,B为偏置项
- 该层的函数为F(x) = W*x + B,则W为4 * 2的矩阵,B 为 1 * 2 的矩阵
从公式理解全连接层
假设第N层为全连接层,输入为Xn,输出为Xn+1,其他与该层无关的信息可以忽略
- 该层公式有Xn+1 = Fn(Xn) = W * Xn + B
前向传播
- 已知Xn,Xn+1 = W * Xn + B, 为前向传播
反向传播
反响传播这里需要求两个梯度,loss 对 W的梯度 和 loss 对 B 的梯度,
- loss 对 W 的梯度
- 具体公式如下:
- loss 对 B 的梯度
- 具体公式如下:
- 上面两个梯度都用到了loss 对 该层输出的梯度,所以在这层应该把loss 对该层输入的梯度传递到上一层。
- 具体公式如下:
caffe中innerproduct的代码
前向传播
这一步在代码里面分为两步:
- Xn+1 = W * Xn,如下图:
- Xn+1 = Xn+1 + B,如下图:
- 和上面推导的一样
反向传播
这里需要求三个梯度,loss 对 W的梯度 ,loss 对 B的梯度, loss 对 Xn的梯度
- loss 对 W 的梯度
- 公式:
- 代码:
- 以上公式和推导的公式有点区别,后面加多loss 对W 的梯度,实现的是累积梯度
- loss 对 B 的梯度
- 公式:
- 代码:
- 以上公式和推导的公式有点区别,后面加多loss 对B 的梯度,实现的是累积梯度
- loss 对 Xn 的梯度,:
- 公式:
- 代码:
- 公式和推导的并无区别