newuoa matlab包,matlab计算基本的声音特征

Some Basic Audio Features

---------------------------------------

Theodoros Giannakopoulos

http:/www.di.uoa.gr/~tyiannak

---------------------------------------

Feature extraction (as in most pattern recognition problems) is maybe the most important step in audio classification tasks. The provided Matlab code computes some of the basic audio features for groups of sounds stored in WAV files. Furthermore, a simple class separability measure, based on feature histograms is used for measuring the ability of each feature to be used for classifying the given classes. Therefore, you can use the provided m-files for computing the features of an audio classification problem (i.e. specific audio classes) and understanding "how good" those features are for the specific classification task.

The features are calculated in a two-step way:

In particular, the following audio features and respective statistics are extracted for each audio segment:

Features Statistics

Energy Entropy Standard Deviation (std)

Signal Energy Std by Mean (average) Ratio

Zero Crossing Rate Std

Spectral Rolloff Std

Spectral Centroid Std

Spectral Flux Std by Mean Ratio

In order to compute the 6 feature statistics for a specific .wav file, you can use the computeAllStatistics(fileName, win, step).

After the features are calculated,

a) the histograms of each feature for all classes are estimated

b) a simple algorithm is used for estimating the separability of the audio classes. In other words, a measure that describes how "easily" the features will be classified. In the case of a multi-class classification problem, the measure is calculated for EACH CLASS opposed to ALL OTHER CLASSES, i.e. a measure value FOR EACH CLASS is computed. The algorithm is described in detail in http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18791&objectType=FILE#.

EXAMPLE:

The main function of this demo is computeFeaturesDirectory(). The only recuired argument is a cell array with the names of the directories in which the .wav files of the respective classes are stored. For example, suppose you have three folders named MUSIC, SPEECH and NOISE, each one containing wav files with relevant audio content (i.e. wav files of segments containing music, speech and noise). In order to compute the audio features of those files simply write:

>> F = computeFeaturesDirectory({'music','speech','noise'});

---------------------------------------

Theodoros Giannakopoulos

http:/www.di.uoa.gr/~tyiannak

---------------------------------------

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值