LeetCode-51-N-Queens

算法描述:

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.

Given an integer n, return all distinct solutions to the n-queens puzzle.

Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space respectively.

Example:

Input: 4
Output: [
 [".Q..",  // Solution 1
  "...Q",
  "Q...",
  "..Q."],

 ["..Q.",  // Solution 2
  "Q...",
  "...Q",
  ".Q.."]
]
Explanation: There exist two distinct solutions to the 4-queens puzzle as shown above.

解题思路:要求所有可能性,用回溯法求解。注意皇后合法性判断的三个条件,水平,45度斜线,135度斜线的计算方法。

    vector<vector<string>> solveNQueens(int n) {
        vector<vector<string>> results;
        vector<string> temp(n,string(n,'.'));
        backtracking(n, results, temp, 0);
        return results;
    }
    
    void backtracking(int n, vector<vector<string>>& results, vector<string>& temp, int row){
        if(row == n){
            results.push_back(temp);
            return;
        }
        
        for(int col=0; col< n; col++){
            temp[row][col] = 'Q';
            if(isValid(temp, row, col, n)){
                backtracking(n,results,temp, row+1);
            }
            temp[row][col] ='.';
        }
    }
    
    bool isValid(vector<string>& temp, int row, int col, int n){
        for(int i=0; i != row; i++){
            if(temp[i][col] == 'Q') return false;
        }
        
        for(int i=row-1, j=col-1; i >=0 && j >=0; i--,j--){
            if(temp[i][j]=='Q') return false;
        }
        for(int i=row-1,j=col+1; i>=0 && j < n; i--,j++){
            if(temp[i][j]=='Q') return false;
        }
        return true;
    }

 

转载于:https://www.cnblogs.com/nobodywang/p/10369874.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值